We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, nonlinear dynamic equations of a wheeled mobile robot are described in the state-space form where the parameters are part of the state (angular velocities of the wheels). This representation, known as quasi-linear parameter varying, is useful for control designs based on nonlinear ∞ approaches. Two nonlinear ∞ controllers that guarantee induced 2-norm, between input (disturbances) and output signals, bounded by an attenuation level γ, are used to control a wheeled mobile robot. These controllers are solved via linear matrix inequalities and algebraic Riccati equation. Experimental results are presented, with a comparative study among these robust control strategies and the standard computed torque, plus proportional-derivative, controller.
In this paper, two nonlinear control techniques are used to solve the position control problem of underactuated cooperative manipulators. The first technique consists in representing the nonlinear system in a quasi-linear parameter varying form and the solution is given in terms of linear matrix inequalities. The second technique gives an explicit solution to the cooperative manipulators control problem. The control of the squeeze force between the manipulator end-effectors and the object is also evaluated. Results obtained from an actual cooperative manipulator, which is able to work as a fully actuated and an underactuated manipulator, are presented.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.