In this work, we propose the development and the corresponding stability analysis of a novel, observer-based output feedback (OFB), tracking controller for rigid-link robot manipulators. Specifically, a model-independent variable-structure-like observer in conjunction with a desired dynamic compensation technique have been utilized to remove the link velocity dependency of the controller formulation. Asymptotic stability of the observer--controller couple is then guaranteed via Lyapunov-based arguments. An adaptive controller extension is also presented to illustrate the expansiveness of the proposed scheme. Experimental studies performed on a two-link planar robot with dynamical uncertainties are included in order to demonstrate the performance and feasibility of the proposed method.