An urn contains A balls of each of N colours. At random n balls are drawn in succession without replacement, with replacement or with replacement together with S new balls of the same colour. Let Xk be the number of drawn balls having colour k, k = 1, …, N. For a given function f the characteristic function of the random variable ZM = f(X1)+ … + f(XM), M ≦ N, is derived. A limit theorem for ZM when M, N, n → ∞is proved by a general method. The theorem covers many special cases discussed separately in the literature. As applications of the theorem limit distributions are obtained for some occupancy problems and for dispersion statistics for the binomial, Poisson and negative-binomial distribution.