Mastitis in dairy cows is an important factor restricting the healthy development of dairy industry. Natural extracts have become a research hotspot to alleviate and prevent diseases because of their unique properties. The purpose of this study was to investigate the effects of resveratrol (RES) on the mitochondrial biosynthesis, antioxidation, and anti-inflammatory in bovine mammary epithelial cells (BMECs) and its mechanism involved. Blood samples were collected from six healthy cows and six mastitis affected cows, respectively, and lipopolysaccharide (LPS) was used to treat BMECs to construct inflammation models, gene interference is achieved by transfection. The results showed that messenger RNA (mRNA) expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) was down-regulated and mitochondrial biogenesis-related gene expression was disrupted in the blood of mastitis cows and LPS-induced BMECs. RES is the best active substance to activate PGC-1α. The addition of RES can effectively alleviate the production of BMECs reactive oxygen species (ROS) and mitochondrial damage induced by LPS, and improve the antioxidation and anti-inflammatory ability, while the alleviation effect of RES is inhibited after interfering with protein kinase AMP-activated catalytic subunit α 1 (PRKAA1). In summary, our study emphasizes that PRKAA1 is a key gene mediating the activation of PGC-1α by RES, which regulates mitochondrial biosynthesis, inhibits ROS release, attenuates mitochondrial damage, and improves mitochondrial antioxidant capacity through the activation of PGC-1α by PRKAA1, thus attenuating the inflammatory response in BMECs.