We consider a failure-prone system operating in continuous time. Condition monitoring is conducted at discrete time epochs. The state of the system is assumed to evolve as a continuous-time Markov process with a finite state space. The observation process with continuous-range values is stochastically related to the state process, which, except for the failure state, is unobservable. Combining the failure information and the condition monitoring information, we derive a general recursive filter, and, as special cases, we obtain recursive formulae for the state estimation and other quantities of interest. Updated parameter estimates are obtained using the expectation-maximization (EM) algorithm. Some practical prediction problems are discussed and finally an illustrative example is given using a real dataset.