A novel way for igniting small thermonuclear assemblies by inertial confinement is proposed, by replacing the positive mass of an imploding dense star with the negative mass in the reference frame of a rapidly rotating thermonuclear target. According to Einstein's general theory of relativity, this negative mass can be orders of magnitude larger than the positive mass density of a neutron star. This novel concept also replaces the Plutonium 239 “spark plugs” of large thermonuclear devices with a shell of natural uranium surrounding a target composed of DT or Li6D.
Unlike the ignition by a laser – or particle beam – induced spherical implosion, this configuration, similar to that of an imploding star is not only Rayleigh–Taylor stable, but it can be realized with intense relativistic electron or ion beams, with an energy of about 100 MJ, having a short range in the dense high Z natural uranium shell.