In this study, a methodology to design frame-like periodic solids for isotropic symmetry by appropriate sizing of unit-cell struts is presented. The methodology utilizes the closed-form effective elastic constants of 2D frame-like periodic solids with square symmetry and 3D frame-like periodic solids with cubic symmetry, derived using the homogenization method based on equivalent strain energy. By using the closed-form effective elastic constants, an equation to enforce isotropic symmetry can be analytically constructed. Thereafter, the equation can be used to determine relative unit-cell strut sizes that are required for isotropic symmetry. The methodology is tested with 2D and 3D frame-like periodic solids with some common unit-cell topologies. Satisfactory results are observed.