We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mathematical models of polyelectrolyte gels are often simplified by assuming the gel is electrically neutral. The rationale behind this assumption is that the thickness of the electric double layer (EDL) at the free surface of the gel is small compared to the size of the gel. Hence, the thin-EDL limit is taken, in which the thickness of the EDL is set to zero. Despite the widespread use of the thin-EDL limit, the solutions in the EDL are rarely computed and shown to match to the solutions for the electrically neutral bulk. The aims of this paper are to study the structure of the EDL and establish the validity of the thin-EDL limit. The model for the gel accounts for phase separation, which gives rise to diffuse interfaces with a thickness described by the Kuhn length. We show that the solutions in the EDL can only be asymptotically matched to the solutions for an electrically neutral bulk, in general, when the Debye length is much smaller than the Kuhn length. If the Debye length is similar to or larger than the Kuhn length, then phase separation can be initiated in the EDL. This phase separation spreads into the bulk of the gel and gives rise to electrically charged layers with different degrees of swelling. Thus, the thin-EDL limit and the assumption of electroneutrality only generally apply when the Debye length is much smaller than the Kuhn length.
Recent studies indicated that ergosterol (Erg) helps form strongly ordered lipid domains in membranes that depend on their chemical characters. However, direct evidence of concentration-dependent interaction of Erg with lipid membranes has not been reported. We studied the Erg concentration-dependent changes in the phase behaviors of membranes using cell-sized liposomes containing 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). We observed the concentration range of phase separation in ternary membranes was significantly wider when Erg rather than cholesterol (Chol) was used as the sterol component. We used machine learning for the first time to analyze microscopic images of cell-sized liposomes and identify phase-separated structures. The automated method was successful in identifying homogeneous membranes but performance remained data-limited for the identification of phase separation domains characterized by more complex features.
The phase separation of a multiphase flow is primarily achieved with an application of a specific mechanism that can lead to a distinctively different dynamic response of each phase in a multiphase medium. Such mechanisms include the gravitational settling (e.g., solids in fluids, droplets in immiscible fluids, bubbles in liquids or slurries), flow-induced alternation of phase inertia (e.g., centrifugal acceleration by flow rotation, jet dispersion, impaction on a surface), selective interception or blockage of phase transport (e.g., sieving; filtration), and separation using externally controlled field forces (e.g., electrostatic precipitation). A separation system or method can be developed by using one or a combination of these mechanisms. High separation efficiency and low mechanical energy loss are among the most important objectives for system design or selection. Actual separation of multiphase flows involves complicated phase transport, flow regimes, particle size distributions, and system geometries. Thus, aside from numerical modeling, much simplified analytical models with empirical correlations are still popular in practice.
When the particle concentration and/or the interparticle forces are sufficiently increased, structures with a solid-like response will develop in colloidal systems. This is dealt with in this chapter, mainly for simple systems, comprised of hard or nearly hard spheres with interparticle attractions. Models have been developed for their state diagrams and have been confirmed by a range of experimental techniques. Gel and glass phases can be distinguished. Glasses occur more commonly at sufficiently concentrated suspensions of hard spheres, but also for suspensions of particles with weak attractions. Gelation occurs at lower volume fractions for suspensions with interparticle attractions, which results in either homogeneous (or equilibrium) gels or heterogeneous gels depending on the nature of the forces. The complex rheology of gels and glasses includes nonlinear viscoelasticity, creep, transient start-up shear, yield strain, and stress. Their nonequilibrium nature has significant consequences for their rheology, including time and shear rate effects. Applying shear causes a change in the microstructure, which recovers when the flow is arrested. For glasses this is known as rejuvenation and aging, respectively. Time and shear effects are stronger in gels where more complex microstructures are involved, leading to a more variable, time-dependent, rheological response.
We derive and analyse an energy to model lipid raft formation on biological membranes involving a coupling between the local mean curvature and the local composition. We apply a perturbation method recently introduced by Fritz, Hobbs and the first author to describe the geometry of the surface as a graph over an undeformed Helfrich energy minimising surface. The result is a surface Cahn–Hilliard functional coupled with a small deformation energy. We show that suitable minimisers of this energy exist and consider a gradient flow with conserved Allen–Cahn dynamics, for which existence and uniqueness results are proven. Finally, numerical simulations show that for the long-time behaviour raft-like structures can emerge and stabilise, and their parameter dependence is further explored.
Under conventional solidification conditions, immiscible alloy melt would undergo large-scale composition segregation after liquid–liquid phase separation, resulting in the loss of properties and application value. In the present study, the ternary immiscible Al70Bi10Sn20 alloy was chosen to study the effect of cooling rate on its resultant microstructure by casting the melt under different cooling conditions. The results indicated that the Al–Bi–Sn alloy with a slow cooling rate exhibits a strong spatial phase separation trend during solidification. However, as the cooling rate increases, the decreasing volume fraction of the segregated Bi–Sn-rich regions indicates the efficient suppression of spatial phase separation. The relatively dispersed distribution of Bi–Sn phase in the Al-rich matrix can be obtained by quenching the melt into water. The influence mechanism of cooling rate on the microstructure of the alloy is also discussed. The present study is beneficial to further tailoring the microstructure of immiscible alloys.
We provide a detailed mathematical analysis of a model for phase separation on biological membranes which was recently proposed by Garcke, Rätz, Röger and the second author. The model is an extended Cahn–Hilliard equation which contains additional terms to account for the active transport processes. We prove results on the existence and regularity of solutions, their long-time behaviour, and on the existence of stationary solutions. Moreover, we investigate two different asymptotic regimes. We study the case of large cytosolic diffusion and investigate the effect of an infinitely large affinity between membrane components. The first case leads to the reduction of coupled bulk-surface equations in the model to a system of surface equations with non-local contributions. Subsequently, we recover a variant of the well-known Ohta–Kawasaki equation as the limit for infinitely large affinity between membrane components.
In the design of high-entropy alloys (HEAs) with desired properties, identifying the effects of elements plays an important role. HEAs with eutectic microstructure can be obtained by judiciously modifying the alloy compositions. In this study, the effect of Nb addition to FeCoNiCuNbx (x = 0.5, 5, 7.5, 11.6, 15) alloys was studied by varying the Nb concentration (at.%). FeCoNiCuNb0.5 HEA shows liquid phase separation to form Cu-rich and FeCoNiCu-rich phases. Detailed solidification paths are proposed for these alloys, which show eutectic, peritectic, and pseudo quasi-peritectic reactions. Increasing Nb content promotes the liquid phase separation tendency and causes the formation of Cu-rich spheres. The effect of Nb on the FeCoNiCu-rich phase was studied based on the nanoindentation and correlated with nanohardness. The compressive deformation properties of these alloys are studied at room temperature and high temperature and correlated with microstructure. Fractography results show the mode of fracture and are correlated with the microstructure obtained.
Cell membrane fatty acids influence fundamental properties of the plasma membrane, including membrane fluidity, protein functionality, and lipid raft signalling. Evidence suggests that dietary n-3 PUFA may target the plasma membrane of immune cells by altering plasma membrane lipid dynamics, thereby regulating the attenuation of immune cell activation and suppression of inflammation. As lipid-based immunotherapy might be a promising new clinical strategy for the treatment of inflammatory disorders, we conducted in vitro and in vivo experiments to examine the effects of n-3 PUFA on CD4+ T cell membrane order, mitochondrial bioenergetics and lymphoproliferation. n-3 PUFA were incorporated into human primary CD4+ T cells phospholipids in vitro in a dose-dependent manner, resulting in a reduction in whole cell membrane order, oxidative phosphorylation and proliferation. At higher doses, n-3 PUFA induced unique phase separation in T cell-derived giant plasma membrane vesicles. Similarly, in a short-term human pilot study, supplementation of fish oil (4 g n-3 PUFA/d) for 6 weeks in healthy subjects significantly elevated EPA (20 : 5n-3) levels in CD4+ T cell membrane phospholipids, and reduced membrane lipid order. These results demonstrate that the dynamic reshaping of human CD4+ T cell plasma membrane organisation by n-3 PUFA may modulate down-stream clonal expansion.
A lattice Boltzmann method is utilized for governing equations which control phase separation of binary fluids with reversible chemical reaction in presence of a shear flow in this paper. We first present the morphology modeling of sheared binary fluids with reversible chemical reaction. We then validate the model by taking the unsheared binary fluids as an example. It is found that the results fit well with the references. The paper shows structures of the sheared system and gives the detailed analysis for the morphology of sheared binary fluids with reversible chemical reaction. The phase separation of the domain structures with different chemical reaction rates is discussed. Through simulations of the sheared binary fluids, two interesting phenomena are observed, which do not exist in a binary mixture without reversible chemical reaction. One is that the same results appear in both low and high viscosity, and the other is that the domain growth exponent with both low and high viscosities presents wave due to the competition of the viscosity and phase separation. In addition, we find that the finite size effects resulting in the growth exponent decreasing appear faster than that of the unsheared blend at a large time when the size of domains is comparable with the lattice size.
Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology and volume fractions of Fe–Co-rich and Νi–Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2–4 nm Fe-rich α1 phases that are nucleated in the Ni-rich α2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. The complementary benefits and challenges associated with correlative STEM-EDS and APT are discussed.
Diblock copolymers (BCPs) show phase separation on mesoscopic length scales and form ordered morphologies in both bulk and thin films, the latter resulting in nanostructured surfaces. Morphologies in thin films are strongly influenced by film parameters, the ratio of film thickness and bulk domain spacing. Laterally structured polymer surfaces may serve as templates for controlled assembly of nanoparticles (NPs). We investigated the BCP of poly(n-pentyl methacrylate) and poly(methyl methacrylate) which show bulk morphologies of stacked lamellae or hexagonally packed cylinders. Thin films were investigated by atomic force microscopy and grazing-incidence small-angle X-ray scattering. For film thicknesses f well below dbulk, standing cylinder morphologies were observed in appropriate molar ratios, while film thicknesses around and larger than dbulk resulted in cylinders arranged parallel to surface. To alter and/or improve the morphology also in presence of different NPs (e.g., silica, gold), solvent vapour annealing (SVA) was applied. The BCP morphology usually remains unchanged but periodicities change depending on type and amount of incorporated NPs. It was found that silica clusters enlarge lateral distances of cylinders, whereas Au NPs reduce it. The effect of SVA is weak. The quality of morphology is slightly improved by SVA and lateral distances remain constant or are slightly reduced.
In this study, a novel hybrid block copolymer containing POSS (BCP), poly(methacrylisobutyl-POSS)-b-poly(methylmethacrylate) (PMAiBuPOSS-b-PMMA) was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The structure and molecular weight were characterized via 1H NMR and GPC. BCP was creatively used as the compatibilizer to overcome the bad compatibility of epoxy and POSS in their blend system. SEM and dynamic mechanical thermal analyses (DMTA) were used to observe the surface morphology and thermal–mechanical behaviors of the resultant products. We found that the amount of microaggregation domains of POSS decreased, while the nano ones increased, when BCP content increased. All the aggregation domains were distributed in epoxy matrix uniformly at nanoscale with the addition of 10 phr BCP and 5 phr POSS monomers. The results indicated that BCP could effectively improve the compatibility between epoxy resin and POSS owing to its amphiphilicity in DGEBA. The fracture behavior of products transformed from brittle fracture to ductile fracture gradually with the increase of BCP, whereas the Tg and E′ decreased.
Semifluorinated (SF) side chain polymers show phase separation between polymer backbone and SF side chains. Due to strong interaction between SF segments the side chains determine the structure behaviour strongly, often resulting in layered structures in which backbones and layers of SF side chains alternate. The interest in this work was directed to find out the dependence of these structures on concentration of SF side chains. Thin films of random copolymers consisting of methylmethacrylate (MMA) and semifluorinated side chain methacrylate (SFMA) segments and with different fluorine content in the perfluoroalkyl side chains (abbreviated as H10F10 and H2F8) were prepared by spin-coating. Phase separation and structure changes were initiated by external subsequent annealing. Corresponding bulk material served as basic information. Generation of ordered structures and variation of film parameters were observed using different X-ray scattering methods (XRR, GIWAXS, and GISAXS). The phase behaviour in bulk is governed by the SF side chain amount and their specific fluorine content which control the self-organization tendency of SF side chains. Additionally, the confinement in thin films generates an orientation of side chains normally to film surface.
Nanostructure evolution during low temperature aging of three binary Fe-Cr alloys has been investigated by atom probe tomography. A new method based on radial distribution function (RDF) analysis to quantify the composition wavelength and amplitude of spinodal decomposition is proposed. Wavelengths estimated from RDF have a power-law type evolution and are in reasonable agreement with wavelengths estimated using other more conventional methods. The main advantages of the proposed method are the following: (1) Selecting a box size to generate the frequency diagram, which is known to generate bias in the evaluation of amplitude, is avoided. (2) The determination of amplitude is systematic and utilizes the wavelength evaluated first to subsequently evaluate the amplitude. (3) The RDF is capable of representing very subtle decomposition, which is not possible using frequency diagrams, and thus a proposed theoretical treatment of the experimental RDF creates the possibility to determine amplitude at very early stages of spinodal decomposition.
In this paper, we analytically investigate multi-component Cahn–Hilliard and Allen–Cahn systems which are coupled with elasticity and uni-directional damage processes. The free energy of the system is of the form ∫Ω½Γ∇c : ∇c + ½|∇z|2+Wch(c)+Wel(e,c,z)dx with a polynomial or logarithmic chemical energy density Wch, an inhomogeneous elastic energy density Wel and a quadratic structure of the gradient of damage variable z. For the corresponding elastic Cahn–Hilliard and Allen–Cahn systems coupled with uni-directional damage processes, we present an appropriate notion of weak solutions and prove existence results based on certain regularization methods and a higher integrability result for strain e.
The aim was to study the effect of solvents on the phase separation of four commercial dental adhesives. Four materials were tested: ClearfilTM SE Bond (CSE), Clearfil Protect Bond (CPB), Clearfil S3 Bond (CS3), and One-Up Bond F Plus (OUB). Distilled water or ethanol was used as a solvent (30 vol%) for microphase separation studies, by stereoscopy. For nanophase images, the mixtures were formulated with two different solvent concentrations (2.5 versus 5 vol%) and observed by atomic force microscopy. Images were analyzed by using MacBiophotonics ImageJ to measure the area of bright domains. Macrophase separations, identified as a loss of clarity, were only observed after mixing the adhesives with water. Nanophase separations were detected with all adhesive combinations. The area of bright domains ranged from 132 to 1,145 nm2 for CSE, from 15 to 285 nm2 for CPB, from 149 to 380 nm2 for CS3, and from 26 to 157 nm2 for OUB. In water-resins mixtures, CPB was the most homogeneous and OUB showed the most heterogeneous phase formation. In ethanol-resin mixtures, CSE attained the most homogeneous structure and OUB showed the most heterogeneous phase. Addition of 5 vol% ethanol to resins decreased the nanophase separation when compared with the control materials.
This paper discusses the development of an invariant finite difference scheme to simulate the microphase separation of copolymers in one-dimensional thin liquid films. The film phenomena are modelled using two-phase shallow water equations and the Ohta-Kawasaki potential, which governs the phase separation of the copolymer. Non-positive volume fractions and spurious oscillations are eventually eliminated, in simulating the one-dimensional phase separation lamellar pattern.
We show that an enslaved phase-separation front moving with diffusive speeds can leave alternating domains of increasing size in their wake. We find the size and spacing of these domains is identical to Liesegang patterns. For equal composition of the components we are able to predict the exact form of the pattern analytically. To our knowledge this is the first fully analytical derivation of the Liesegang laws. We also show that there is a critical value for C below which only two domains are formed. Our analytical predictions are verified by numerical simulations using a lattice Boltzmann method.
A modified Verlet method which involves a kind of mid-point rule is constructed and applied to the one-dimensional motion of elastic balls of finite size, falling under constant gravity in space and then under the chemical potential in the interface region of phase separation within a two-liquid film. When applied to the simulation of two balls falling under constant gravity in space, the new method is found to be computationally superior to the usual Verlet method and to Runge–Kutta methods, as it allows a larger time step for comparable accuracy. The main purpose of this paper is to develop an efficient numerical method to simulate balls in the interface region of phase separation within the two-liquid film, where the ball motion is coupled with two-phase flow. The two-phase flow in the film is described via shallow water equations, using an invariant finite difference scheme that accurately resolves the interface region. A larger time step in computing the ball motion, more comparable with the time step in computing the two-phase flow, is a significant advantage. The computational efficiency of the new method in the coupled problem is demonstrated for the case of four elastic balls in the two-liquid film.