In this paper, we investigate a nonparametric approach to provide a recursive estimatorof the transition density of a piecewise-deterministic Markov process, from only oneobservation of the path within a long time. In this framework, we do not observe a Markovchain with transition kernel of interest. Fortunately, one may write the transitiondensity of interest as the ratio of the invariant distributions of two embedded chains ofthe process. Our method consists in estimating these invariant measures. We state a resultof consistency and a central limit theorem under some general assumptions about the mainfeatures of the process. A simulation study illustrates the well asymptotic behavior ofour estimator.