We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Some types of conventional mechanical, pneumatic or other vibration protecting mechanisms with parametric elements of positive stiffness, i.e. having a given load capacity, may reveal the negative or quasi-zero stiffness in small. However, this is considered as a side effect and have no engineering feasibility to be realized in commercial vibration protection systems. This disadvantage can easily be eliminated if join the redundant mechanisms with parametric elements of negative and quasi-zero stiffness in large. Redundant mechanisms can drastically improve the quality of vibration protection in a certain combination and interaction with commercial systems, and without a destroying the system workspace. In this manner, one may arrange a seat suspension, independent wheel suspension, cabin's mounting, table or platform for measuring instrument and in this way protect a man-operator or passenger, power unit, onboard or stationary electronics, and cargo container. It was shown that the mechanisms with negative and quasi-zero stiffness in large, being properly joined to commercial vibration protection systems by using transmissions with short kinematic chain, increased 5 to 57 times the quality of vibration protection in the whole infra-low frequency range including nearly zero values. In some practical cases, this advantage reaches 100 to 300 times and more
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.