We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study space-like hypersurfaces with functionally bounded mean curvature in Lorentzian warped products , where F is a (non-compact) complete Riemannian manifold whose universal covering is parabolic. In particular, we provide several rigidity results under appropriate mathematical and physical assumptions. As an application, several Calabi–Bernstein-type results are obtained which widely extend the previous ones in this setting.
We apply a mean-value inequality for positive subsolutions of the $f$-heat operator, obtained from a Sobolev embedding, to prove a nonexistence result concerning complete noncompact $f$-maximal spacelike hypersurfaces in a class of weighted Lorentzian manifolds. Furthermore, we establish a new Calabi–Bernstein result for complete noncompact maximal spacelike hypersurfaces in a Lorentzian product space.
We prove a DDVV inequality for submanifolds of warped products of the form $I\times _{a}\mathbb{M}^{n}(c)$, where $I$ is an interval and $\mathbb{M}^{n}(c)$ is a real space form of curvature $c$. As an application, we give a rigidity result for submanifolds of $\mathbb{R}\times _{e^{\unicode[STIX]{x1D706}t}}\mathbb{H}^{n}(c)$.
In this paper, we establish new characterization results concerning totally umbilical hypersurfaces of the hyperbolic space $\mathbb{H}^{n+1}$, under suitable constraints on the behavior of the Lorentzian Gauss map of complete hypersurfaces having some constant higher order mean curvature. Furthermore, working with different warped product models for $\mathbb{H}^{n+1}$ and supposing that certain natural inequalities involving two consecutive higher order mean curvature functions are satisfied, we study the rigidity and the nonexistence of complete hypersurfaces immersed in $\mathbb{H}^{n+1}$.
It is known that the minimal 3-spheres of CR type with constant sectional curvature have been classified explicitly, and also that the weakly Lagrangian case has been studied. In this paper, we provide some examples of minimal 3-spheres with constant curvature in the complex projective space, which are neither of CR type nor weakly Lagrangian, and give the adapted frame of a minimal 3-sphere of CR type with constant sectional curvature.
We apply appropriate maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space. By supposing a suitable restriction on the norm of the traceless part of the second fundamental form, we show that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder, when its scalar curvature is positive, or to a spherical cylinder, when its scalar curvature is negative. Related to the compact case, we also establish a rigidity result.
In this paper we obtain a sharp height estimate concerning compact hypersurfaces immersed into warped product spaces with some constant higher-order mean curvature and whose boundary is contained in a slice. We apply these results to draw topological conclusions at the end of the paper.
In this paper we prove the existence of complete minimal surfaces in some metric semidirect products. These surfaces are similar to the doubly and singly periodic Scherk minimal surfaces in ${ \mathbb{R} }^{3} $. In particular, we obtain these surfaces in the Heisenberg space with its canonical metric, and in ${\mathrm{Sol} }_{3} $ with a one-parameter family of nonisometric metrics.
Our purpose is to study the geometry of linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Einstein spacetime, whose sectional curvature is supposed to obey some standard restrictions. In this setting, by using as main analytical tool a generalized maximum principle for complete non-compact Riemannian manifolds, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures, one of which is simple. Applications to the de Sitter space are given.
In this paper, we give a classification of spacelike submanifolds with parallel normalised mean curvature vector field and linear relation $R= aH+ b$ of the normalised scalar curvature $R$ and the mean curvature $H$ in the de Sitter space ${ S}_{p}^{n+ p} (c)$.
In this paper, we deal with complete hypersurfaces immersed with bounded higher order mean curvatures in steady state-type spacetimes and in hyperbolic-type spaces. By applying a generalised maximum principle for the Yau's square operator [11], we obtain uniqueness results in each of these ambient spaces.
Let Mn be an n-dimensional closed hypersurface with constant mean curvature H satisfying |H| ≤ ϵ(n) in a unit sphere Sn+1(1), n ≤ 8 and S the square of the length of the second fundamental form of M. There exists a constant δ(n, H) > 0, which depends only on n and H such that if S0 ≤ S ≤ S0 + δ(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n and .
Complete minimal immersions satisfying the Omori–Yau maximum principle are investigated. It is shown that the limit set of a proper immersion into a convex set must be the whole boundary of the convex set. In case of a nonproper and nonplanar immersion we prove that the convex hull of the immersion is a half-space or ℝ3.
Using generalized position vector fields we obtain new upper bound estimates of the first nonzero eigenvalue of a kind of elliptic operator on closed submanifolds isometrically immersed in Riemannian manifolds of bounded sectional curvature. Applying these Reilly inequalities we improve a series of recent upper bound estimates of the first nonzero eigenvalue of the Lr operator on closed hypersurfaces in space forms.
Let M be an n-dimensional closed hypersurface with constant mean curvature H satisfying |H| ≤ ϵ(n) in a unit sphere Sn+1, n ≤ 7, and S the square of the length of the second fundamental form of M. There exists a constant δ(n, H) > 0, which depends only on n and H, such that if S0 ≤ S ≤ S0 + δ(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n and .
We extend the concept of umbilicity to higher order umbilicity in Riemannian manifolds saying that an isometric immersion is k-umbilical when APk−1(A) is a multiple of the identity, where Pk(A) is the kth Newton polynomial in the second fundamental form A with P0(A) being the identity. Thus, for k=1, one-umbilical coincides with umbilical. We determine the principal curvatures of the two-umbilical isometric immersions in terms of the mean curvatures. We give a description of the two-umbilical isometric immersions in space forms which includes the product of spheres embedded in the Euclidean sphere S2k+1 of radius 1. We also introduce an operator φk which measures how an isometric immersion fails to be k-umbilical, giving in particular that φ1 ≡ 0 if and only if the immersion is totally umbilical. We characterize the two-umbilical hypersurfaces of a space form as images of isometric immersions of Einstein manifolds.
We study hypersurfaces of constant mean curvature immersed into warped product spaces of the form $\mathbb{R}\times_\varrho\mathbb{P}^n$, where $\mathbb{P}^n$ is a complete Riemannian manifold. In particular, our study includes that of constant mean curvature hypersurfaces in product ambient spaces, which have recently been extensively studied. It also includes constant mean curvature hypersurfaces in the so-called pseudo-hyperbolic spaces. If the hypersurface is compact, we show that the immersion must be a leaf of the trivial totally umbilical foliation $t\in\mathbb{R}\mapsto\{t\}\times\mathbb{P}^n$, generalizing previous results by Montiel. We also extend a result of Guan and Spruck from hyperbolic ambient space to the general situation of warped products. This extension allows us to give a slightly more general version of a result by Montiel and to derive height estimates for compact constant mean curvature hypersurfaces with boundary in a leaf.
Biharmonic Lagrangian surfaces of constant mean curvature in complex space forms are classified. A further important point is that new examples of marginally trapped biharmonic Lagrangian surfaces in an indefinite complex Euclidean plane are obtained. This fact suggests that Chen and Ishikawa's classification of marginally trapped biharmonic surfaces [6] is not complete.
The Christoffel problem, in its classical formulation, asks for a characterization of real functions defined on the unit sphere $S^{n-1}\subset\mathbb{R}^n$ which occur as the mean curvature radius, expressed in terms of the Gauss unit normal, of a closed convex hypersurface, i.e. the boundary of a convex body in $\mathbb{R}^n$. In this work we consider the related problem in Lorentz space $\mathbb{L}^n$ and present necessary and sufficient conditions for a $C^1$ function defined in the hyperbolic space $H^{n-1}\subset\mathbb{L}^n$ to be the mean curvature radius of a spacelike embedding $\bm{M}\hookrightarrow\mathbb{L}^n$.
In this paper we prove that minimal 3-spheres of CR type with constant sectional curvature c in the complex projective space CPn are all equivariant and therefore the immersion is rigid. The curvature c of the sphere should be c = 1/(m2-1) for some integer m≥ 2, and the full dimension is n = 2m2-3. An explicit analytic expression for such an immersion is given.