Published online by Cambridge University Press: 02 May 2017
We apply a mean-value inequality for positive subsolutions of the $f$-heat operator, obtained from a Sobolev embedding, to prove a nonexistence result concerning complete noncompact $f$-maximal spacelike hypersurfaces in a class of weighted Lorentzian manifolds. Furthermore, we establish a new Calabi–Bernstein result for complete noncompact maximal spacelike hypersurfaces in a Lorentzian product space.
The second author is partially supported by CNPq, Brazil, grant 303977/2015-9.