Protocols designed for the adipogenic differentiation of human and mouse cells are commonly used for inducing the adipogenesis of bovine stromal vascular cells. However, likely due to metabolic differences between ruminant and non-ruminant animals, these methods result in only few cells undergoing complete adipogenesis with minimal lipid droplet accumulation. Here, we discuss the development of an adipogenic differentiation protocol for bovine primary cells through a three-dimensional spheroid culture. Stromal vascular cells derived from bovine intramuscular fat were isolated and stored in liquid nitrogen before culturing. Cells were cultured in hanging drops for 3 days to allow for the formation of spherical structures. The spheroids were then transferred to cell culture plates with endothelial basal medium-2 for 3 days and in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with a standard adipogenic cocktail for 3 additional days, which were then allowed to fully differentiate for 3 days in DMEM supplemented with insulin. Compared with conventional two-dimensional culture, cells in a three-dimensional spheroid culture system had higher adipogenic gene expression and consequently contained more adipocytes with larger lipid droplets. In addition, endothelial induction of spheroids prior to adipogenic differentiation is essential for efficient induction of adipogenesis of bovine stromal vascular cells, mimicking in vivo adipose development. In summary, the newly developed three-dimensional spheroid culture method is an efficient way to induce adipogenic differentiation and study adipose development of cells derived from ruminant animals, which also can be used for studying the role of angiogenesis in adipose development.