For each group $G$ having an infinite normal subgroup with the relative property (T) (e.g. $G=H\times K$, with $H$ infinite with property (T) and $K$ arbitrary) and each countable abelian group $\varLambda$ we construct free ergodic measure-preserving actions $\sigma_\varLambda$ of $G$ on the probability space such that the first cohomology group of $\sigma_\varLambda$, $\ssm{H}^1(\sigma_\varLambda,G)$, is equal to $\text{Char}(G)\times\varLambda$. We deduce that $G$ has uncountably many non-stably orbit-equivalent actions. We also calculate 1-cohomology groups and show existence of ‘many’ non-stably orbit-equivalent actions for free products of groups as above.