Different techniques were used to manipulate the inhibitory interaction between the red and green photoreceptors (R and G cones) of rhesus and human primates. The response techniques that were used were the corneal electroretinogram (ERG) and psychophysical increment-threshold spectral sensitivity functions. Red-green opponency, as measured by the depth of the notch at 580 nm, is removed by intravitreal injection of bicuculline but not by strychnine. Therefore, red-green opponency is mediated by GABA and not glycine. The depth of the notch is dependent upon stimulus size. Between 30' and 15' test light diameters, this sign of red-green opponency disappears. Psychophysical increment thresholds are shown to produce the notch while decrements do not and intravitreal APB is shown to reduce the notch, evidence that red-green opponency is carried by the “ON” and not the “OFF” bipolar pathways of the retina. Red and green annuli are shown to selectively reduce red and green inhibition, as though there were selective reduction of the surround response in center-surround organized red-green receptive fields.