The basic robot control technique is the model based computer-torque control which is known to suffer performance degradation due to model uncertainties. Adding a neural network (NN) controller in the control system is one effective way to compensate for the ill effects of these uncertainties. In this paper a systematic study of NN controller for a robot manipulator under a unified computed-torque control framework is presented. Both feedforward and feedback NN control schemes are studied and compared using a common back-propagation training algorithm. Effects on system performance for different choices of NN input types, hidden neurons, weight update rates, and initial weight values are also investigated. Extensive simulation studies for trajectory tracking are carried out and compared with other established robot control schemes.