We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A number of stochastic queueing systems exhibit an interesting phenomenon known as the cut-off phenomenon. A properly scaled version of the distance between the transient process and the stationary one converges to a step function as the initial load converges to infinity. The purpose of this paper is to promote the idea that this phenomenon is a direct consequence of the coupling between the two processes, being thus generalizable to systems lacking any kind of Markovian structure.
We analyze a stable GI/G/1 queue that starts operating at time t = 0 with N0 ≠ 0 customers. First, we analyze the time required for this queue to empty for the first time. Under the assumption that both the interarrival and the service time distributions are of the exponential type, we prove that , where λ and μ are the arrival and the service rates. Furthermore, assuming in addition that the interarrival time distribution is of the non-lattice type, we show that the settling time of the queue is essentially equal to N0/(μ –λ); that is, we prove that
where is the total variation distance between the distribution of the number of customers in the system at time t and its steady-state distribution. Finally, we show that there is a similarity between the queue we analyze and a simple fluid model.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.