We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Computerized interpretation of the prehospital electrocardiogram (ECG) is increasingly being used in the basic life support (BLS) ambulance setting to reduce delays to treatment for patients suspected of ST segment elevation myocardial infarction (STEMI).
Objectives:
To estimate 1) predictive values of computerized prehospital 12-lead ECG interpretation for STEMI and 2) additional on-scene time for 12-lead ECG acquisition.
Methods:
Over a 2-year period, 1,247 ECGs acquired by primary care paramedics for suspected STEMI were collected. ECGs were interpreted in real time by the GEMarquette 12SL ECG analysis program. Predictive values were estimated with a bayesian latent class model incorporating the computerized ECG interpretations, consensus ECG interpretations by study cardiologists, and hospital diagnosis. On-scene time was compared for ambulance-transported patients with (n 5 985) and without (n 5 5,056) prehospital ECGs who received prehospital aspirin and/or nitroglycerin.
Results:
The computer's positive and negative predictive values for STEMI were 74.0% (95% credible interval [CrI] 69.6–75.6) and 98.1% (95% CrI 97.8–98.4), respectively. The sensitivity and specificity were 69.2% (95% CrI 59.0–78.5) and 98.9% (95% CrI 98.1–99.4), respectively. Prehospital ECGs were associated with a mean increase in on-scene time of 5.9 minutes (95% confidence interval 5.5–6.3).
Conclusions:
The predictive values of the computerized prehospital ECG interpretation appear to be adequate for diversion programs that direct patients with a positive result to hospitals with angioplasty facilities. The estimated 26.0% chance that a positive interpretation is false is likely too high for activation of a catheterization laboratory from the field. Acquiring prehospital ECGs does not substantially increase on-scene time in the BLS setting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.