There is a well-known connection between the asymptotic behaviour of the tail of the distribution of the increasing ladder height and the integrated tail of the step distribution of a random walk which either drifts to –∞, or oscillates and whose decreasing ladder height has finite mean. We establish a similar connection in a local sense; this means that in the lattice case we link the asymptotic behaviours of the mass function of the ladder height distribution and of the tail of the step distribution. We deduce the asymptotic behaviour of the mass function of the maximum of the walk, when this is finite, and also treat the non-lattice case.