We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Life-as-we-know-it harnesses carbon for the scaffolding in biomolecules and liquid water as the solvent. This chapter delineates the beneficial properties of carbon and water, and then investigates whether viable alternatives to this duo exist (i.e., ‘exotic’ life). With regard to the latter, the likes of ammonia, sulfuric acid, and liquid hydrocarbons are expected to have some physical and/or chemical advantages relative to water, while also exhibiting certain downsides. In contrast, it is suggested that few options appear feasible aside from carbon, with silicon representing a partial exception. The chapter subsequently delves into the habitability of the clouds of Venus and the lakes of Titan, because the alternative solvents sulfuric acid and liquid hydrocarbons (methane and ethane) are, respectively, documented therein. Both these environments might be conducive to hosting exotic life, but it is cautioned that they are likely subjected to severe challenges.
The major essential nutrients, nitrogen and phosphorus, limit primary productivity in many aquatic environments, though in some areas of the ocean (high nutrient low chlorophyll), productivity is limited by the availability of iron or iron and manganese. Planktonic cyanobacteria are major nitrogen fixers in marine and fresh waters; heterocystous cyanobacteria are common in fresh waters and occur as symbionts in marine diatoms. Non-heterocystous marine cyanobacteria occur free-living and as algal symbionts. Nitrogen fixation requires iron and molybdenum, which can be less commonly replaced by vanadium, as well as reductants and ATP. For combined nitrogen, the form assimilated into organic nitrogen is, as for diazotrophs, ammonium, which is taken up by specific transporters. Nitrate influx also involves an energised transporter. Nitrate reductase requires catalytic iron and molybdenum and reductant to produce nitrite; nitrite is reduced to ammonium by nitrite reductase using catalytic iron. Several forms of organic nitrogen can also be taken up and assimilated by algae. Phosphorus is taken up as inorganic phosphate; organic phosphate from the medium is hydrolysed by phosphatases secreted by algae. Aquatic rhizophytic macrophytes with rhizoids or roots in fine-grained substrates acquire various fractions of combined nitrogen and of phosphate from the sediment and from overlying water.
The transformation of ferrihydrite to goethite and/or hematite, as influenced by the presence of co-precipitated Si, was investigated by infrared spectroscopy (IR), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). Ferrihydrite samples having Si/Fe molar ratios ranging from 0 to 1 were synthesized by reacting Fe2(SO4)3 with NaOH to an equilibrium pH of 8.2 in the presence of Na2SiO3. The XRD pattern of the Si-free sample contained five distinct but weak peaks, whereas the patterns of ferrihydrite samples containing Si had only two broad bands. With an increase of the Si/Fe molar ratio from 0.10 to 1.0, the 2.54-Å XRD peak shifted to 2.97 Å, and broad IR bands were observed at 990 cm−1 (Si-O stretching region) and 450 cm−1 (silicate bending region). The intensities of both IR bands increased with increasing Si/Fe molar ratio.
Ferrihydrite samples were incubated at room temperature in sodium acetate/acetic acid buffer solutions at pH 3, 5, 7, and 10 and in CaCO3 suspension at pH 8.3 for 10 months. Additional samples were incubated at pH 12.5 at 24°, 40°, 60°, and 91°C for 36 hr. Room-temperature incubation of ferrihydrite samples having Si/Fe molar ratios ≥0.1 at pH 3 for one week resulted in the dissolution of Fe and the precipitation of silica gel. Ferrihydrite samples having Si/Fe molar ratios ≤0.05 transformed to poorly crystalline goethite during room-temperature incubation at pH 5. The rate of transformation and the degree of crystallinity of the product were inversely related to Si/Fe molar ratio, and, with heat treatment, were also dependent on incubation temperature. Siliceous ferrihydrite samples having Si/Fe molar ratios ≥0.10 did not transform to phases having greater crystallinity during incubation at either room temperature in buffered solutions at pH ≥7 for as long as 10 months or at pH 12.5 at 91°C for 36 hr. The XRD peak at 2.97 Å did not shift significantly during incubation procedures, providing evidence that the structure of the high-Si ferrihydrite was not significantly altered.
A series of synthetic goethites containing varying amounts of Si and P dopants were characterized by X-ray powder diffraction, electron diffraction, microbeam electron diffraction, and Mössbauer spectroscopy. Very low level incorporation produced materials having structural and spectral properties similar to those of poorly crystalline synthetic or natural goethite. At higher incorporation levels, mixtures of noncrystalline materials were obtained which exhibited Mössbauer spectra typical of noncrystalline materials mixed with a superparamagnetic component. Microbeam electron diffraction indicated that these mixtures contained poorly crystalline goethite, poorly crystalline ferrihydrite, and a noncrystalline component. If the material was prepared with no aging of the alkaline Fe3+ solution before the addition of Na2HPO4 or Na2SiO3, materials were obtained containing little if any superparamagnetic component. If the alkaline Fe3+ solution was aged for 48 hr before the addition, goethite nuclei formed and apparently promoted the precipitation of a superparamagnetic phase. The Mössbauer-effect hyperfme parameters and the saturation internal-hyperfine field obtained at 4.2 K were typical of those of goethite; however, the Mössbauer spectra indicated that the ordering temperature, as reflected in the relaxation rate and/or the blocking temperature, decreased with increasing incorporation of Si and P. The complete loss of crystallinity indicates that Si and P did not substitute for Fe, but rather adsorbed on crystal-growth sites, thereby preventing uniform crystal growth.
Ferrihydrite samples having Si/Fe molar ratios ranging from 0 to 1 were synthesized by the reaction of Fe2(SO4)3 and Na2SiO3 with NaOH to an equilibrium pH of 8.2. Hematite formed by incubating the ferrihydrite (Si/Fe molar ratios ≤0.05) at pH 12.5 and 91°C for 36 hr had a globular morphology. Hematite formed from Si-free ferrihydrite gave infrared (IR) bands at 548, 471, 397, and 337 cm−1, whereas, hematite formed from Si-containing ferrihydrite having 0.001 to 0.05 Si/Fe molar ratios gave broad IR bands at about 550, 450, and 330 cm−1. Ferrihydrite having Si/Fe molar ratios ≥0.10 did not transform to hematite following the aqueous-thermal treatment.
The ferrihydrite samples were thermally treated for 2 hr at consecutive 100°C intervals from 100° to 800°C. The Si-free ferrihydrite transformed at 300°C to poorly crystalline hematite. Transmission electron microscopic analyses indicated that the hematite consisted of aggregates of spheroidal particles of 20–80 Å cross sections. Broad IR bands were observed at 529 and 452 cm−1; however, after heating the sample to 800°C, the particle cross sections increased to about 150–600 Å, and additional IR bands were present at 378 and 325 cm−1. The differences in the IR patterns of hematite formed from ferrihydrite at 300° and 800°C were probably due to increases in particle size and aggregation and improved crystallinity of the hematite particles following the higher temperature treatment. The hematite formed by the thermal transformation of the ferrihydrite having a 0.01 Si/Fe molar ratio was also spheroidal, and IR vibrations were present at about 528 and 443 cm−1. An increase in the temperature of the thermal treatment, however, did not result in additional IR bands.
Differences in the IR vibrations of hematite formed during aqueous- and dry-thermal treatments of the ferrihydrite samples were probably due to differences in the particle size and morphology of the product. The Si content, due to its effect on particle size of the precursor and the prevention of sintering and particle growth of hematite, influenced the IR pattern of the product. Particle morphology and IR spectroscopy may therefore be useful indicators of the precursor of hematite and the conditions of hematite formation in soil.
This chapter focuses on describing the work done to develop UNCD films as hermetic, bio-inert/biocompatible (made of C atoms-element of life in human DNA) coatings for encapsulation of Si-based microchips implantable inside the eye on the human retina, as the main component of an artificial retina to restore partial vision to people blinded by genetically-induced degeneration of the retina photoreceptors. The UNCD coating enables implantation of the Si microchips inside the eye, since diamond is totally inert to chemical attack by the eye humor, as opposed to Si, which is chemically etched. The chapter describes the synthesis of the UNCD films with focus on using a novel low temperature (≤ 400 ˚C) UNCD growth process to make it compatible with encapsulation of the Si microchip without destroying the CMOS transistors, in the chip, which exhibit a thermal budget of 400 ˚C, i.e., they cannot be heated beyond those temperatures since they would be destroyed. The chapter also the extremely smooth and dense surface needed for the UNCD coating to be hermetic.
Atom probe tomography was employed to observe and derive the composition of carbon clusters in implanted silicon. This value, which is of interest to the microelectronic industry when considering ion implantation defects, was estimated not to exceed 2 at%. This measurement has been done by fitting the distribution of first nearest neighbor distances between monoatomic carbon ions (C+ and C2+). Carbon quantification has been considerably improved through the detection of molecular ions, using lower electric field conditions as well as equal proportions of 12C and 13C. In these conditions and using another quantification method, we have shown that the carbon content in clusters approaches 50 at%. This result very likely indicates that clusters are nuclei of the SiC phase.
Sixty-five years ago, Teal’s (1962) study showed that salt marsh primary production was greater than community respiration. To explain this result, he suggested that marshes exported excess organic matter either directly as organic matter, or as organisms, to coastal waters. This concept, that marshes were “outwelling” material to the adjacent estuary and coastal oceans, was soon expanded to nutrients as well. However, the actual importance of the marsh in supplying organic matter and nutrients to adjacent coastal systems has been controversial and reviews debating the importance of outwelling from marshes have regularly appeared over the decades (Nixon 1980, Childers et al. 2000, Odum 2000, Valiela et al. 2000, Boynton and Nixon 2013). It has also been argued that in some cases the coastal ocean can act as a source of nutrients to the marsh and estuary (“inwelling”).
X-ray diffraction imaging (XRDI) (topography) measurements of silicon die warpage within fully packaged commercial quad-flat no-lead devices are described. Using synchrotron radiation, it has been shown that the tilt of the lattice planes in the Analog Devices AD9253 die initially falls, but after 100 °C, it rises again. The twist across the die wafer falls linearly with an increase in temperature. At 200 °C, the tilt varies approximately linearly with position, that is, displacement varies quadratically along the die. The warpage is approximately reversible on cooling, suggesting that it has a simple paraboloidal form prior to encapsulation; the complex tilt and twisting result from the polymer setting process. Feasibility studies are reported, which demonstrate that a divergent beam and quasi-monochromatic radiation from a sealed X-ray tube can be used to perform warpage measurements by XRDI in the laboratory. Existing tools have limitations because of the geometry of the X-ray optics, resulting in applicability only to simple warpage structures. The necessary modifications required for use in situations of complex warpage, for example, in multiple die interconnected packages are specified.
In this report, atomic force microscopy (AFM) nanolithography and electrochemical anodic oxidation using bias-assisted lithography are used to created oxide patterns on the surface of a silicon substrate. Non-contact mode imaging was conducted after the lithography process to confirm the successful fabrication of oxide patterns on the surface as well as to distinguish the surface difference between the oxide layers and silicon substrate. With only a few seconds of run time, oxide patterns as narrow as 35 nm in width were created illustrating that the bias mode in the Park Scientific SmartLitho software can be used to generate well-defined nanoscale patterns and features.
The role of silicon (Si) in alleviating the effects of biotic and abiotic stresses, including defence against insect herbivores, in plants is widely reported. Si defence against insect herbivores is overwhelmingly studied in grasses (especially the cereals), many of which are hyper-accumulators of Si. Despite being neglected, legumes such as soybean (Glycine max) have the capacity to control Si accumulation and benefit from increased Si supply. We tested how Si supplementation via potassium, sodium or calcium silicate affected a soybean pest, the native budworm Helicoverpa punctigera Wallengren (Lepidoptera: Noctuidae). Herbivory reduced leaf biomass similarly in Si-supplemented (+Si) and non-supplemented (–Si) plants (c. 29 and 23%, respectively) relative to herbivore-free plants. Both Si supplementation and herbivory increased leaf Si concentrations. In relative terms, herbivores induced Si uptake by c. 19% in both +Si and –Si plants. All Si treatments reduced H. punctigera relative growth rates (RGR) to a similar extent for potassium (−41%), sodium (−49%) and calcium (−48%) silicate. Moreover, there was a strong negative correlation between Si accumulation in leaves and herbivore RGR. To our knowledge, this is only the second report of Si-based herbivore defence in soybean; the rapid increase in leaf Si following herbivory being indicative of an induced defence. Taken together with the other benefits of Si supplementation of legumes, Si could prove an effective herbivore defence in legumes as well as grasses.
Semiconducting nanostructures such as nanowires (NWs) have been used as building blocks for various types of sensors, energy storage and generation devices, electronic devices and for new manufacturing methods involving printed NWs. The response of these sensing/energy/electronic components and the new fabrication methods depends very much on the quality of NWs and for this reason it is important to understand the growth mechanism of 1D semiconducting nanostructures. This is also important to understand the compatibility of NW growth steps and tools used in the process with these unconventional substrates such as plastic that are used in flexible and large area electronics. Therefore, this Element presents at length discussion about the growth mechanisms, growth conditions and the tools used for the synthesis of NWs. Although NWs from Si, ZnO and carbon nanotubes (CNTs) are included, the discussion is generic and relevant to several other types of NWs as well as heterostructures.
Atomistic simulations of 18 silicon 〈110〉 symmetric tilt grain boundaries are performed using Stillinger Weber, Tersoff, and the optimized Modified Embedded Atom Method potentials. We define a novel structural unit classification through dislocation core analysis to characterize the relaxed GB structures. GBs with the misorientation angle θ ranging from 13.44° to 70.53° are solely composed of Lomer dislocation cores. For GBs with θ less than but close to 70.53°, GB ‘step’ appears and the equilibrated states with lowest GB energies can be attained only when such GB ‘step’ is located in the middle of each single periodic GB structure. For the misorientation angles in the range of 93.37° ≤ θ ≤ 148.41°, GB structures become complicated since they contain multiple types of dislocation cores. This work not only facilitates the structural characterization of silicon 〈110〉 STGBs, but also may provide new insights into mirco-structure design in multicrystalline silicon.
The effect of nature and pressure of ambient environment on laser-induced breakdown spectroscopy (LIBS) and ablation mechanisms of silicon (Si) have been investigated. A Q-switched Nd-YAG laser with the wavelength of 1064 nm, pulse duration of 10 ns, and pulsed energy of 50 mJ was employed. Si targets were exposed under ambient environments of inert gases of argon, neon, and helium for different pressures ranging from 5 to 760 torr. The influence of nature and pressure of ambient gases on the emission intensity of Si plasma have been explored by using the LIBS spectrometer system. The plasma parameters such as electron temperature and number density were determined by applying Boltzmann plot and Stark broadening method, respectively. Our experimental results suggest that the nature and pressure of ambient environment play a significant role for generation, recombination, and expansion of plasma and consequently affect the excitation temperature as well as electron density of plasma. The surface morphological analysis of laser-irradiated Si was performed by using scanning electron microscope (SEM). Various kinds of structures, for example laser-induced periodic surface structures or ripples, cones, droplets, and craters have been generated and their density and size are found to be strongly dependent upon the ambient environment. A quantitative analysis of particulate size and crater depth measured from SEM images showed a strong correlation between plasma parameters and the growth of micro/nanostructures on the modified Si surface.
In the course of a thorough investigation of the performance-structure-chemistry interdependency at silicon grain boundaries, we successfully developed a method to systematically correlate aberration-corrected scanning transmission electron microscopy and atom probe tomography. The correlative approach is conducted on individual APT and TEM specimens, with the option to perform both investigations on the same specimen in the future. In the present case of a Σ9 grain boundary, joint mapping of the atomistic details of the grain boundary topology, in conjunction with chemical decoration, enables a deeper understanding of the segregation of impurities observed at such grain boundaries.
We present a macroscopic model for describing the electrical and thermal behaviour of silicon devices. The model makes use of a set of macroscopic state variables for phonons and electrons that are moments of their respective distribution functions. The evolution equations for these variables are obtained starting from the Bloch–Boltzmann–Peierls kinetic equations for the phonon and the electron distributions, and are closed by means of the maximum entropy principle. All the main interactions between electrons and phonons, the scattering of electrons with impurities, as well as the scattering of phonons among themselves are considered. In particular, we propose a treatment of the optical phonon decay directly based on the expression of its transition rate (Klemens 1966Phys. Rev.148 845; Aksamija & Ravaioli 2010Appl. Phys. Lett.96, 091911). As an application of the model, we evaluate the silicon thermopower.
Piezoresistance (PZR) is the change in the electrical resistivity of a solid induced by an applied mechanical stress. Its origin in bulk crystalline materials like silicon is principally a change in the electronic structure which leads to a modification of the effective mass of charge carriers. The past few years have seen a rising interest in the PZR properties of semiconductor nanostructures, motivated in part by claims of a giant PZR (GPZR) in silicon nanowires more than two orders of magnitude bigger than the known bulk effect. This review aims to present the controversy surrounding claims and counterclaims of GPZR in silicon nanostructures by summarizing the major works carried out over the past 10 years. The main conclusions to be drawn from the literature are that (i) reproducible evidence for a GPZR in ungated nanowires is limited; (ii) in gated nanowires, GPZR has been reproduced by several authors; (iii) the giant effect is fundamentally different from either the bulk silicon PZR or that resulting from quantum confinement, the evidence pointing to an electrostatic origin; (iv) released nanowires tend to have slightly larger PZR than unreleased nanowires; and (v) insufficient work has been performed on bottom-up grown nanowires to be able to rule out a fundamental difference in their properties when compared with top-down nanowires. On the basis of this, future possible research directions are suggested.
This article describes various techniques for applying strain to current and future complementary metal–oxide–semiconductor (CMOS) channels to boost CMOS performance. A brief history of both biaxial and uniaxial strain engineering in planar CMOS technology is discussed. Scalability challenges associated with process-induced uniaxial strain in sub-22 nm CMOS is highlighted in view of shrinking device dimensions and 3D device architecture (such as fin field-effect transistors [FinFETs]). Non-uniform strain relaxation in patterned geometries in tight pitch two- and three-dimensional devices is addressed. A case is made that the future scalable strain platform will require a combination of biaxial strain at wafer level in conjunction with local uniaxial strain. Finally, potential application of strain engineering to advanced III–V metal oxide semiconductor FET channels will be examined.
The evolution of elastic strain engineering in nanostructures and devices requires characterization tools that can be used to not only observe but also quantify the actual strain in a sample, whether this strain is intrinsic or applied. Strain contrast in crystalline samples has always been one of the primary contrast mechanisms used for imaging the microstructure of a material in a transmission electron microscope (TEM). In this regard, TEM is a particularly powerful tool due to its ability to spatially resolve strain information with high precision and spatial resolution. This article reviews the techniques currently available for directly measuring strain in the TEM. Examples are given for measuring strain in semiconductor devices using imaging, diffraction, and holographic techniques. For strain measurement during in situ mechanical testing, two general methods are presented: the conversion of displacement from an actuation device or the direct measurement of strain using image features during deformation.
In the eutrophic Lake Kasumigaura in Japan, a trend of dissolved Si (DSi) concentration was detected over the last three decades, probably caused by the DSi release enhanced by an increase in sediment resuspension for the same period (Arai et al., Limnol., 13, 81–95, 2012). The present study described the long-term trends of the magnitude and seasonality of diatom blooms in the lake during 1981–2010 using the database and assessed the influencing factors for the trends by the numerical simulation of DSi and diatoms. The box model was developed based on the lake budgets (inflow, outflow, release and sedimentation) and the simple diatom growth model depending on DSi, temperature and light condition. As results, database analysis detected a long-term trend of increasing diatom abundance and a shift of blooming season from spring and autumn to the winter–spring period. Si could be regarded as a main nutrient factor limiting diatom growth by analyzing N:P:Si ratios. Our model simulation relatively well-reproduced the increasing trend and the shift of seasonality of DSi and diatoms, even though peaks of diatom blooms were underestimated in some years. Among input variables, the concentration of resuspended sediments radically increased. The model simulation with the input variables or parameters changed suggested as follows: (1) the recent DSi release from resuspended sediments enhanced diatom abundance and (2) the degradation of light condition caused by resuspension affected the shift of blooming season. These findings implicate the significance of the interactions between sediments and water to phytoplankton blooms.