Whole-cell voltage-clamp recordings were used to examine the unusual pharmacological properties of the electrical coupling between rod-driven horizontal cells in skate retina as revealed previously by receptive-field measurements (Qian & Ripps, 1992). The junctional resistance was measured in electrically coupled cell pairs that had been enzymatically isolated and maintained in culture; the typical value was about 19.92 MΩ(n = 45), more than an order of magnitude lower than the nonjunctional membrane resistance. These data and the intercellular spread of the fluorescent dye Lucifer Yellow provide a good indication that skate horizontal cells are well coupled. The junctional conductance between cells was not modulated by the neurotransmitters dopamine (200 μM) or GABA (1 mM), nor was it affected by the membrane-permeable analogues of cAMP or cGMP, or the adenylate cyclase activator, forskolin. Although resistant to agents that have been reported to alter horizontal-cell coupling in cone-driven horizontal cells, the junctional conductance between paired horizontal cells of skate was greatly reduced by the application of 20 mM acetate, which is known to effectively reduce intracellular pH. Together with the results obtained in situ on the receptive-field properties of skate horizontal cells, these findings indicate that the gap-junctional properties of rod-driven horizontal cells of the skate are fundamentally different from those of cone-driven horizontal cells in other species. This raises the possibility that there is more than one class of electrical synapse on vertebrate horizontal cells.