Let f be a polynomial of degree n≥2 with f(0)=0 and f′(0)=1. We prove that there is a critical point ζ of f with ∣f(ζ)/ζ∣≤1/2 provided that the critical points of f lie in the sector {reiθ:r>0,∣θ∣≤π/6}, and ∣f(ζ)/ζ∣<2/3 if they lie in the union of the two rays {1+re±iθ:r≥0}, where 0<θ≤π/2.