We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To develop a method to make use of incomplete 24-hour urinary samples in nutritional epidemiology, especially when validating the dietary intake of nitrogen (protein), sodium and potassium.
Design:
Urinary data for men and women collected in three different studies were evaluated. The concentration of para-aminobenzoic acid (PABA) in one 24-hour urine sample per person was compared with the concentrations of nitrogen, sodium, potassium and creatinine.
Setting:
Men and women living in Cambridge, UK and women living in the town of Varberg, Sweden.
Subjects:
In total, this study consists of data from 73 Swedish women (20–50 years of age), 165 UK women (50–65 years) and 75 UK men (55–88 years).
Results:
On average four out of 10 people in this study had a PABA recovery below 85%. The linear regression equations for urinary excretion of nitrogen, sodium and potassium in relation to PABA recovery were y = 2.3 + 0.088 * x (r = 0.99), y = 45 + 0.82 * x (r = 0.87) and y = 19 + 0.60 * x (r = 0.93), respectively.
Conclusions:
The linear regression equations can be used for adjusting urinary nitrogen, sodium and potassium in urinary collections in cases where the PABA recovery is below 85%. Since it is common to obtain 24-hour urine collections with a PABA recovery below 85%, this method should increase the usefulness of biological markers of food intake in nutritional epidemiological studies and also increase the possibilities to study people that previously have been part of the drop-out group or the group with low motivation and cooperation. It is important to stress that we have not studied the relationship between PABA recovery and various urinary variables below the PABA recovery of 50%. Thus, in a case of PABA recovery below 50%, we do not recommend the use of this method to compensate for incomplete collections.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.