We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In [12], Schwichtenberg showed that the System T definable functionals are closed under a rule-like version Spector’s bar recursion of lowest type levels 0 and 1. More precisely, if the functional Y which controls the stopping condition of Spector’s bar recursor is T-definable, then the corresponding bar recursion of type levels 0 and 1 is already T-definable. Schwichtenberg’s original proof, however, relies on a detour through Tait’s infinitary terms and the correspondence between ordinal recursion for $\alpha < {\varepsilon _0}$ and primitive recursion over finite types. This detour makes it hard to calculate on given concrete system T input, what the corresponding system T output would look like. In this paper we present an alternative (more direct) proof based on an explicit construction which we prove correct via a suitably defined logical relation. We show through an example how this gives a straightforward mechanism for converting bar recursive definitions into T-definitions under the conditions of Schwichtenberg’s theorem. Finally, with the explicit construction we can also easily state a sharper result: if Y is in the fragment Ti then terms built from $BR^{\mathbb{N},\sigma } $ for this particular Y are definable in the fragment ${T_{i + {\rm{max}}\left\{ {1,{\rm{level}}\left( \sigma \right)} \right\} + 2}}$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.