We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Limited studies have evaluated the impact of recreation on successful ageing (SA) for individuals with spinal cord injury (SCI) in a longitudinal manner. Most existing SA models emphasise biomedical-based dimensions of physical functioning, which has been criticised as unrealistic and limited, especially for people with disabilities. Various researchers and organisations have proposed that SA needs to be reassessed using more self-perceived, self-reported measurements. Understanding long-term life satisfaction predictors for individuals ageing with SCI is still limited, particularly when including longitudinal recreation participation data. This study, based on Rowe and Kahn's SA model and utilising self-reported measurements, observes the long-term changes in self-reported health status, recreation participation time and social integration levels, and evaluates the long-term impacts of these predictors on life satisfaction among individuals with SCI. The sample comprises individuals with SCI (N = 11,450) who are at least 45 years old at the time of injury or have lived with their injury for over 15 years. Results indicate that when ageing with SCI, life satisfaction increases over time, but their recreation time, social interactions and self-perceived health status decline. Moreover, regular participation in recreational activities, engagement in and maintenance of certain levels of social relationships, and high self-evaluation of health can positively impact life satisfaction during ageing. The study explores the feasibility of using self-perceived measurements to replace biomedical-based variables in Rowe and Kahn's SA model and examines their impacts on life satisfaction among people ageing with disabilities. In the future development of SA models, researchers can incorporate more self-reported, self-evaluated assessment variables to better capture the ageing experience, especially for people with disabilities.
Lower limb spasm and spasticity may develop following spinal cord injury (SCI), causing hyper-excitability and increased tone, which can impact function and quality of life. Pharmaceutical interventions for spasticity may cause unwanted side effects such as drowsiness and weakness. Invasive and non-invasive electrical stimulation has been shown to reduce spasticity without these side effects. The aim of this study was to investigate the effect of sacral afferent stimulation (SAS), through surface electrical stimulation of the dorsal genital nerve (N = 7), and through implanted electrodes on the sacral afferent nerve roots, on lower limb spasm and spasticity (N = 2). Provoked spasms were interrupted with conditional SAS, where stimulation commenced following a provoked spasm, or unconditional stimulation, which was applied continuously. Conditionally and unconditionally applied SAS was shown to suppress acute provoked spasms in people with SCI. There was a statistically significant reduction in area under the curve of quadriceps electromyography during acute spasm with SAS compared to a control spasm. These results show that SAS may provide a safe, low-cost method of reducing acute spasm and spasticity in people living with SCI. SAS through implanted electrodes may also provide an additional function to sacral nerve stimulation devices.
Due to diagnostic, therapeutic, and rehabilitative advances, obstetric anesthesia providers are increasingly likely to encounter patients with disorders of the spinal cord. Sound knowledge of associated anatomic and physiologic abnormalities, coupled with an understanding of how the physiologic changes of pregnancy interact, are crucial to managing these increasingly complex patients. This chapter covers congenital and acquired spinal cord disorders, including acute and chronic spinal cord injury, spinal dysraphism, spinal cord tumors and vascular malformations, syringomyelia, the anterior spinal artery syndrome, infectious diseases and neurodegenerative conditions. Multidisciplinary management, with the team ideally being convened prior to conception, is crucial. For the most part, parturients with spinal cord disorders can attempt vaginal delivery. Operative delivery is usually reserved for obstetric reasons, for patients who would be unlikely to tolerate labor due to cardiopulmonary comorbidity, or for patients whose spinal cord pathology mandates delivery prior to, or synchronous with, definitive management. While spinal cord disorders do not necessarily preclude neuraxial anesthesia per se, providers are urged to obtain recent neuroimaging, and to document a preanesthetic neurological examination. The presence of surgical metalwork or implanted devices may pose challenges requiring an individualized approach.
Presurgical psychological screening (PPS) is a procedure for mitigating possible unfavorable outcomes after spinal surgery. Although the effectiveness of PPS on degenerative spinal diseases has been investigated in Western studies, a potential cultural influence on PPS is still unknown. This study thus aims to explore the experiences of Taiwanese people before spinal surgery and tries to establish culture-specific components of PPS in Taiwan.
Participants and Methods:
A total of five participants aged from 44–69 with degenerative spinal diseases were eligible in this study. All participants visited a neurosurgical outpatient clinic for potential surgical treatment, and each participant underwent an one-hour semi-structured interview before surgery. The demographical information, medical history, psychological status (e.g., personality traits and emotional disturbances) and considerations to make a surgical decision, were recorded and further analyzed following the rule of grounded theory.
Results:
Four major components with 21 sub-components were reported when deciding to receive a surgical treatment for their spinal diseases, including disease-related considerations, medical information, self-concept and interpersonal relations. In terms of disease-related aspects, patients concerned about etiology, symptomatology, impacts, coping strategies and rehabilitation methods. As for medical information, patients paid more attention on medical compliance, the relationship with medical system, attitude for treatment, expectation to surgical outcomes, medical decisions and medical information. As for the self-concept, patients considered more on the impacts of disease on self-concept, strategies of emotional regulations and personality traits. In terms of interpersonal relations, patients reported more on the supportive resources, patterns of interpersonal activities and impacts of interpersonal relations on medical decisions. Additionally, other specific factors, such as past negative experiences (e.g., chronic insomnia, experiences of psychological counseling), litigation, physical punishment in childhood and social roles, were also reported.
Conclusions:
Like previous findings, our results supported that the interpersonal relations and doctor-patient relationship in PPS were important considerations before surgery, while we further evidenced that influences of family members on medical decision is determinant and unique in this culture.
Spasticity is part of the upper motor neuron syndrome produced by conditions such as stroke, multiple sclerosis, traumatic brain injury, spinal cord injury or cerebral palsy that affect upper motor neurons or their efferent pathways in the brain or spinal cord. It is characterized by increased muscle tone, exaggerated tendon reflexes, repetitive stretch reflex discharges (clonus) and abnormal spastic posturing. Late sequelae may include contracture, pain, fibrosis and muscle atrophy. The most common pattern of spasticity in the upper limb involves flexion of the fingers, wrist and elbow, adduction with internal rotation at the shoulder and sometimes thumb curling across the palm or fist. The most common pattern of spasticity in the lower limb involves extension at the knee, plantarflexion at the ankle and sometimes inversion of the foot.
Chemodenervation by intramuscular injection of botulinum toxin can reduce spastic muscle tone, normalize limb posture, ameliorate pain, modestly improve motor function and prevent contractures. This chapter uses anatomical illustrations to depict the muscles involved in common patterns of spastic posturing, using a “clinician’s eye” view to demonstrate approaches to injection points, discusses guidance techniques such as electromyography and tabulates dose ranges of the common toxin preparations for specific muscles.
The circadian system in mammals involves a hierarchy of clock regulators that entrain circadian rhythms in the periphery. The molecular circadian clock regulates all systems in the body, including the nervous and immune systems. Under healthy conditions, the circadian system enables effective function of the nervous and immune systems by promoting system vigilance during predicted daily active phases, and rejuvenation during rest phases. However, injury to the nervous system causes spiralling neuroimmune activation that exacerbates damage. Here, we will discuss how the circadian system regulates neuroinflammatory dynamics in the central nervous system during health and after neurotrauma. Traumatic brain injury or spinal cord injury dysregulate the circadian system, and circadian disruption is worsened during acute post-injury times by a suboptimal circadian environment in the hospital. In turn, circadian disruption unleashes immune activation and impairs reparative responses, thereby worsening damage. Given the intimate link between the circadian and neuroimmune systems, there are several levels of potential therapeutic intervention. Environmental interventions include improving light–dark amplitude between day and night and reducing nighttime interruptions acutely after neurotrauma. Pharmacologic interventions after injury could reinforce circadian rhythms or target clock genes to create a reparative neuroimmune milieu. Future studies should explore the circadian–neuroimmune axis, with a goal to use evidence-based chronotherapies to enhance repair and recovery after traumatic brain injury and spinal cord injury.
In chronic spinal cord injury (SCI), individuals experience dietary inadequacies complicated by an understudied research area. Our objectives were to assess (1) the agreement between methods of estimating energy requirement (EER) and estimated energy intake (EEI) and (2) whether dietary protein intake met SCI-specific protein guidelines. Persons with chronic SCI (n = 43) completed 3-day food records to assess EEI and dietary protein intake. EER was determined with the Long and Institute of Medicine (IOM) methods and the SCI-specific Farkas method. Protein requirements were calculated as 0·8–1·0 g/kg of body weight (BW)/d. Reporting accuracy and bias were calculated and correlated to body composition. Compared with IOM and Long methods (P < 0·05), the SCI-specific method did not overestimate the EEI (P = 0·200). Reporting accuracy and bias were best for SCI-specific (98·9 %, −1·12 %) compared with Long (94·8 %, −5·24 %) and IOM (64·1 %, −35·4 %) methods. BW (r = –0·403), BMI (r = –0·323) and total fat mass (r = –0·346) correlated with the IOM reporting bias (all, P < 0·05). BW correlated with the SCI-specific and Long reporting bias (r = –0·313, P = 0·041). Seven (16 %) participants met BW-specific protein guidelines. The regression of dietary protein intake on BW demonstrated no association between the variables (β = 0·067, P = 0·730). In contrast, for every 1 kg increase in BW, the delta between total and required protein intake decreased by 0·833 g (P = 0·0001). The SCI-specific method for EER had the best agreement with the EEI. Protein intake decreased with increasing BW, contrary to protein requirements for chronic SCI.
Traumatic spinal cord injuries (tSCI) are common, often leaving patients irreparably debilitated. Therefore, novel strategies such as nerve transfers (NT) are needed for mitigating secondary SCI damage and improving function. Although different tSCI NT options exist, little is known about the epidemiological and injury-related aspects of this patient population. Here, we report such characteristics to better identify and understand the number and types of tSCI individuals who may benefit from NTs.
Materials and Methods:
Two peripheral nerve experts independently evaluated all adult tSCI individuals < 80 years old admitted with cervical tSCI (C1–T1) between 2005 and 2019 with documented tSCI severity using the ASIA Impairment Scale for suitability for NT (nerve donor with MRC strength ≥ 4/5 and recipient ≤ 2/5). Demographic, traumatic injury, and neurological injury variables were collected and analyzed.
Results:
A total of 709 tSCI individuals were identified with 224 (32%) who met the selection criteria for participation based on their tSCI level (C1–T1). Of these, 108 (15% of all tSCIs and 48% of all cervical tSCIs) were deemed to be appropriate NT candidates. Due to recovery, 6 NT candidates initially deem appropriate no longer qualified by their last follow-up. Conversely, 19 individuals not initially considered appropriate then become eligible by their last follow-up.
Conclusion:
We found that a large proportion of individuals with cervical tSCI could potentially benefit from NTs. To our knowledge, this is the first study to detail the number of tSCI individuals that may qualify for NT from a large prospective database.
Studying factors that contribute to our understanding of maintaining normal energy balance are of paramount significance following spinal cord injury (SCI). Accurate determination of energy needs is crucial for providing nutritional guidance and managing the increasing prevalence of malnutrition or obesity after SCI. BMR represents 75–80 % of the total energy expenditure in persons with SCI. Accurately measuring BMR is an important component for calculating total energetic needs in this population. Indirect calorimetry is considered the gold-standard technique for measuring BMR. However, technical challenges may limit its applications in large cohort studies and alternatively rely on prediction equations. Previous work has shown that BMR changes in response to disuse and exercise in the range of 15–120 %. Factors including sex, level of injury and type of assistive devices may influence BMR after SCI. RMR is erroneously used interchangeably for BMR, which may result in overestimation of energetic intake when developing nutritional plans. To address this concern, we comprehensively reviewed studies that conducted BMR (n=15) and RMR (n=22) in persons with SCI. The results indicated that RMR is 9 % greater than BMR in persons with SCI. Furthermore, the SCI-specific prediction equations that incorporated measures of fat-free mass appeared to accurately predict BMR. Overall, the current findings highlighted the significance of measuring BMR as well as encouraging the research and clinical community to effectively establish countermeasures to combat obesity after SCI.
Vitamin D deficiency is prevalent in patients with chronic spinal cord injury (SCI) and has been implicated as an aetiologic factor of osteoporosis and various skeletal and extra-skeletal issues in SCI patients. Few data were available regarding vitamin D status in patients with acute SCI or immediately assessed at hospital admission. This retrospective cross-sectional study evaluated vitamin D status in SCI patients at admission to a UK SCI centre in January–December 2017. A total of 196 eligible patients with serum 25(OH)D concentration records at admission were recruited. The results found that 24 % were vitamin D deficient (serum 25(OH)D < 25 nmol/l), 57 % of the patients had serum 25(OH)D < 50 nmol/l. The male patients, patients admitted in the winter–spring time (December–May), and patients with serum sodium < 135 mmol/l or with non-traumatic causes had a significant higher prevalence of vitamin D deficiency than their counterparts (28 % males v. 11⋅8 % females, P = 0⋅02; 30⋅2 % in winter–spring v. 12⋅9 % in summer–autumn, P = 0⋅007; 32⋅1 % non-traumatic v. 17⋅6 % traumatic SCI, P = 0⋅03; 38⋅9 % low serum sodium v. 18⋅8 % normal serum sodium, P = 0⋅010). There was a significant inverse association of serum 25(OH)D concentration with body mass index (BMI) (r = −0⋅311, P = 0⋅002), serum total cholesterol (r = −0⋅168, P = 0⋅04) and creatinine concentrations (r = −0⋅162, P = 0⋅02) that were also significant predictors of serum 25(OH)D concentration. Strategies for systematic screening and efficacy of vitamin D supplementation in SCI patients need to be implemented and further investigated to prevent the vitamin D deficiency-related chronic complications.
Individuals with spinal cord injuries (SCIs) are vulnerable in case of disaster, and it is unknown how they can prepare themselves for such events. This study explored factors associated with self-assistance behaviors against disasters.
Methods:
An internet-based cross-sectional survey was conducted in Japan. The participants were 70 individuals with SCI in a self-help group in Japan. Self-assistance behaviors against disaster were defined in terms of personal network, escape, information, essential items, disaster drill participation, and list registration. After identifying significant variables through binary analyses, logistic regression analysis was conducted to adjust for age and sex.
Results:
Neighborhood association and peer communication significantly predicted list registration (AOR:2.97; 95% CI:1.05 – 8.40; P = 0.04; AOR:2.79, 95% CI:1.00–7.74, P = 0.05). However, no significant factor was found in relation to other self-assistance behaviors against disasters.
Conclusion:
Belonging to a neighborhood association and having communication with peers could help individuals with SCI register on a list for assistance during disaster. To promote self-assistance behaviors against disasters, access to neighborhood associations, and opportunities for peer communication should be increased.
Changes in body composition and dietary intake occur following spinal cord injury (SCI). The Geometric Framework for Nutrition (GFN) is a tool that allows the examination of the complex relationships between multiple nutrition factors and health parameters within a single model. This study aimed to utilize the GFN to examine the associations between self-reported macronutrient intakes and body composition in persons with chronic SCI. Forty-eight individuals with chronic SCI were recruited. Participants completed and returned 3- or 5-day self-reported dietary recall sheets. Dietary intake of macronutrients (fats, proteins, and carbohydrates) were analysed. Anthropometric measures (circumferences), dual-energy x-ray absorptiometry (DXA), and magnetic resonance imaging (MRI) were used to assess whlole-body composition. Associations between all circumference measures and carbohydrates were observed. Among MRI measures, only significant associations between subcutaneous adipose tissue and protein x carbohydrate as well as carbohydrates alone were identified. Carbohydrates were negatively associated with several measures of fat mass as measured by DXA. Overall, carbohydrates appear to play an important role in body composition among individuals with SCI. Higher carbohydrate intake was associated with lower fat mass. Additional research is needed to determine how carbohydrate intake influences body composition and cardiometabolic health after SCI.
1. Traumatic spinal cord injury (TSCI) is a devastating event which can lead to transient or permanent nerve damage, with a peak incidence in young adult males.
2. The American Spinal Injury Association (ASIA) impairment scale is a helpful tool for diagnosing and classifying the severity of cord injury.
3. Initial management should follow established advanced trauma and life support (ATLS) guidance using a systematic approach.
4. Early priorities include prevention of secondary spinal injury and timely identification of an unstable fracture.
5. TSCI can cause organ dysfunction, depending on the level of injury, and may require support to optimise physiological parameters.
Many persons with spinal cord injury (SCI) have one or more preventable chronic diseases related to excessive energetic intake and poor eating patterns. Appropriate nutrient consumption relative to need becomes a concern despite authoritative dietary recommendations from around the world. These recommendations were developed for the non-disabled population and do not account for the injury-induced changes in body composition, hypometabolic rate, hormonal dysregulation and nutrition status after SCI. Because evidence-based dietary reference intake values for SCI do not exist, ensuring appropriate consumption of macronutrient and micronutrients for their energy requirements becomes a challenge. In this compressive review, we briefly evaluate aspects of energy balance and appetite control relative to SCI. We report on the evidence regarding energy expenditure, nutrient intake and their relationship after SCI. We compare these data with several established nutritional guidelines from American Heart Association, Australian Dietary Guidelines, Dietary Guidelines for Americans, Institute of Medicine Dietary Reference Intake, Public Health England Government Dietary Recommendations, WHO Healthy Diet and the Paralyzed Veterans of America (PVA) Clinical Practice Guidelines. We also provide practical assessment and nutritional recommendations to facilitate a healthy dietary pattern after SCI. Because of a lack of strong SCI research, there are currently limited dietary recommendations outside of the PVA guidelines that capture the unique nutrient needs after SCI. Future multicentre clinical trials are needed to develop comprehensive, evidence-based dietary reference values specific for persons with SCI across the care continuum that rely on accurate, individual assessment of energy need.
This chapter interrogates arguments for doing invasive research on animals in laboratories. A non-speciesist utilitarian test for determining when experimentation may be justified is introduced and discussed as is the abolition of animal experimentation.
We have developed a one-of-a-kind hand exoskeleton, called Maestro, which can power finger movements of those surviving severe disabilities to complete daily tasks using compliant joints. In this paper, we present results from an electromyography (EMG) control strategy conducted with spinal cord injury (SCI) patients (C5, C6, and C7) in which the subjects completed daily tasks controlling Maestro with EMG signals from their forearm muscles. With its compliant actuation and its degrees of freedom that match the natural finger movements, Maestro is capable of helping the subjects grasp and manipulate a variety of daily objects (more than 15 from a standardized set). To generate control commands for Maestro, an artificial neural network algorithm was implemented along with a probabilistic control approach to classify and deliver four hand poses robustly with three EMG signals measured from the forearm and palm. Increase in the scores of a standardized test, called the Sollerman hand function test, and enhancement in different aspects of grasping such as strength shows feasibility that Maestro can be capable of improving the hand function of SCI subjects.
A novel inpatient vocational counseling service (named “In-Voc”) was developed and evaluated in three Australian spinal cord injury (SCI) rehabilitation hospitals, aiming to improve vocational outcomes after SCI. The program provided a trained Vocational Counseling Coordinator who worked alongside the allied health team, medical, and nursing staff at each hospital. The Coordinators were interviewed to examine the role expectations and role behaviors associated with the introduction of their novel, vocationally focused, occupational role. The Coordinators’ descriptions of their role behavior were very similar to those defined by rehabilitation counselors in North America. They reported the novel role to be a productive and satisfying one. Encouragingly, the In-Voc program was associated with significantly higher post-injury employment outcomes.