A spoofing attack on a global navigation satellite system (GNSS) receiver is a threat to a significant community of GNSS users due to the high stakes involved. This paper investigates the use of slope based metrics for the detection of spoofing. The formulation of slope based metrics involves monitoring correlators along with tracking correlators in the receiver's channel, which are slaved to the prompt tracking correlator. In this study, using some candidate metrics, detectors have been formed through the analysis of simulated spoofing attacks. A theoretical variance of each metric has also been calculated as a reference for the threshold. A threshold is estimated using the measured variance from the clean signals, for specific false alarm rate. By using the measured threshold, detectors are formed based on slope metrics. These detectors have been tested using TEXBAT data. The results show that the differential slope metrics have good performance. The results have also been compared with some other techniques of spoofing detection.