We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ denote a reductive algebraic group over $\mathbb{C}$ and $x$ a nilpotent element of its Lie algebra $\mathfrak{g}$. The Springer variety ${{B}_{x}}$ is the closed subvariety of the flag variety $B$ of $G$ parameterizing the Borel subalgebras of $\mathfrak{g}$ containing $x$. It has the remarkable property that the Weyl group $W$ of $G$ admits a representation on the cohomology of ${{B}_{x}}$ even though $W$ rarely acts on ${{B}_{x}}$ itself. Well-known constructions of this action due to Springer and others use technical machinery from algebraic geometry. The purpose of this note is to describe an elementary approach that gives this action when $x$ is what we call parabolic-surjective. The idea is to use localization to construct an action of $W$ on the equivariant cohomology algebra $H_{s}^{*}({{B}_{x}})$, where $S$ is a certain algebraic subtorus of $G$. This action descends to ${{H}^{*}}({{B}_{x}})$ via the forgetful map and gives the desired representation. The parabolic-surjective case includes all nilpotents of type $A$ and, more generally, all nilpotents for which it is known that $W$ acts on $H_{s}^{*}({{B}_{x}})$ for some torus $S$. Our result is deduced from a general theorem describing when a group action on the cohomology of the ûxed point set of a torus action on a space lifts to the full cohomology algebra of the space.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.