This study attempts to examine convection caused by the combined effects of temperature and concentration gradients in an annular enclosure with steps. An experimental study of thermosolutal convection of a CuSO4+ H2SO4+ H2O solution in a horizontal annular enclosure with steps is conducted using an electrochemical system that enables either opposing or cooperating in temperature and concentration gradients to be imposed. The shadowgraph recording technique is utilized to visualize and analyze the flow field phenomenon. The large difference between the thermal and solutal diffusion rates causes the flow to exhibit double-diffusive characteristics. In both cooperating and opposing cases, some finger-type flow can be visualized in the layered flow structure. Furthermore, Sh (mass transfer rate) increased with increasing Grt for fixed Grm and S*. Sh is larger in the cooperating case than in the opposing case for given Grt and Grm values.