This study examined the effectiveness with which motion parallax information can be utilized by rhesus monkeys for depth perception. A visual display comprised of random-dots that mimicked a rigid, three-dimensional object rocking back and forth was used. Differential depth was produced by presenting sub-regions of the dots moving at different velocities from the rest of dots in the display. The tasks for the monkeys were to detect or discriminate a target region that was protruding the furthest from the background plane. To understand the role of stimulus movement, we examined the accuracy and the rapidity of the saccadic responses as a function of rocking velocity of the entire three-dimensional object. The results showed that performance accuracy improved and reaction times decreased with increasing rocking velocities. The monkeys can process the motion parallax information with remarkable rapidity such that the average reaction time ranged between 212 and 246 milliseconds. The data collected suggest that the successive activation of just two sets of cones is sufficient to perform the task.