We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A classical result of Fatou gives that every bounded holomorphic function on the disc has radial limits for almost every point in the torus, and the limit function belongs to the Hardy space H_\infty of the torus. This property is no longer true when we consider vector-valued functions. The Banach spaces X for which this property is satisfied are said to have the analytic Radon-Nikodym property (ARNP). Some important equivalent reformulations of ARNP are studied in this chapter. Among others, X has ARNP if and only if each X-valued H_p- function f on the disc has radial limits almost everywhere on the torus (and not only H_\infty-functions). Even more, in this case each such f has non-tangential limits within any Stolz region. The basic tools are subharmonic functions and certain maximal inequalities. Finally, it is shown that if X has the ARNP, then every L_p of functions taking values in X with a finite measure also has ARNP.
For each 1 ≤ p ≤ ∞, the Hardy space \mathcal{H}_p of Dirichlet series is defined as the image through the Bohr transform of the Hardy space of functions on the infinite-dimensional polytorus. The Dirichlet polynomials are dense in \mathcal{H}_p for every 1 ≤ p < ∞. For p=2 this coincides with the space of Dirichlet series whose coefficients are square-summable. A Dirichlet series with coefficients a_n belongs to\mathcal{H}_p if and only if the series with coefficients a_n/n^ε is in \mathcal{H}_p for every ε >0 and the norms are uniformly bounded. In this case, the series is the limit as ε tends to 0. As a technical tool to see this, vector-valued Dirichlet series (that is, series with coefficients in some Banach space) are introduced, and some basic definitions and properties (such as the convergence abscissas, Bohr-Cahen formulas) are given.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.