In this paper we prove that if a Cantor set has ratios of dissection bounded away from zero, then there is a natural number N, such that its N-fold sum is an interval. Moreover, for each element z of this interval, we explicitly construct the N elements of C whose sum yields z. We also extend a result of Mendes and Oliveria showing that when s is irrational is an interval if and only if a /(1−2a) as/(1−2as) ≥ 1.