In various industrial robotic applications, the effective traversal of a manipulator amidst obstacles and its ability to reach specific task-points are imperative for the execution of predefined tasks. In certain scenarios, the sequence in which the manipulator reaches these task-points significantly impacts the overall cycle time required for task completion. Moreover, some tasks necessitate significant force exertion at the end-effector. Therefore, establishing an optimal sequence for the task-points reached by the end-effector’s tip is crucial for enhancing robot performance, ensuring collision-free motion and maintaining high-force application at the end-effector’s tip.
To maximize the manipulator’s manipulability, which serves as a performance index for assessing its force capability, we aim to establish an optimal collision-free task sequence considering higher mechanical advantage. Three optimization criteria are considered: the cycle time, collision avoidance and the manipulability index. Optimization is accomplished using a genetic algorithm coupled with the Bump-Surface concept for collision avoidance. The effectiveness of this approach is confirmed through simulation experiments conducted in 2D and 3D environments with obstacles employing both redundant and non-redundant robots.