We generalize to the p-LaplacianΔp a spectral inequality proved by M.-T.Kohler−Jobin. As a particular case of such a generalization, we obtain a sharp lower boundon the first Dirichlet eigenvalue of Δp of aset in terms of its p-torsional rigidity. The result is valid in everyspace dimension, for every1 < p < ∞ and for every openset with finite measure. Moreover, it holds by replacing the first eigenvalue with moregeneral optimal Poincaré-Sobolev constants. The method of proof is based on ageneralization of the rearrangement technique introduced by Kohler−Jobin.