We use a two-dimensional particle-in-cell simulation to investigate the dynamic polarization and stopping power for an ion beam propagating through a two-component plasma, which is simultaneously irradiated by a strong laser pulse. Compared to the laser-free case, we observe a reduction in the instantaneous stopping power that initially follows the shape of the laser pulse and becomes particularly large as the laser frequency approaches the plasma electron frequency. We attribute this large reduction in the ion stopping power to an increase in plasma temperature due to the energy absorbed in the plasma from the laser pulse through the process of wave heating. In addition, dynamic polarization of the plasma by the ion is found to be strongly modulated by the laser field.