Some properties of the number of up- and downcrossings over level u, in a special case of regenerative processes are discussed. Two basic relations between the density functions and the expected number of upcrossings of this process are derived. Using these reults, two examples of controlled M/G/1 queueing systems are solved. Simple relations are derived for the waiting time distribution conditioned on the phase of control encountered by an arriving customer. The Laplace-Stieltjes transform of the distribution function of the waiting time of an arbitrary customer is also derived for each of these two examples.