The effect of fluid on the natural frequencies of a vertical rectangular lock gate is investigated. The fluid is assumed to be inviscid and incompressible having an irrotational flow field. The far boundary of fluid domain is truncated near the lock gate structure by solving the Laplace equation using Fourier half range cosine series expansion. The formulation of lock gate structure is governed using Mindlin’s plate theory. The coupled interaction between the fluid domain and the lock gate structure is established using finite element method (FEM) and a computer code is written using FORTRAN. Convergence study and validation of the formulation are carried out to minimise the computational error. The natural frequencies of lock gate coupled with and without fluid are determined for undisturbed and linearised free surface conditions. By varying extent of fluid domain, the effect on the natural frequencies of lock gate is evaluated. The results of natural frequencies obtained may be useful to the designer when the reservoir lock gate structure is exposed to the natural disasters.