We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Neuroimaging studies have documented brain structural changes in schizophrenia at different stages of the illness, including clinical high-risk (cHR), genetic high-risk (gHR), first-episode schizophrenia (FES), and chronic schizophrenia (ChS). There is growing awareness that neuropathological processes associated with a disease fail to map to a specific brain region but do map to a specific brain network. We sought to investigate brain structural damage networks across different stages of schizophrenia.
Methods
We initially identified gray matter alterations in 523 cHR, 855 gHR, 2162 FES, and 2640 ChS individuals relative to 6963 healthy controls. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to four specific networks.
Results
Brain structural damage networks of cHR and gHR had limited and non-overlapping spatial distributions, with the former mainly involving the frontoparietal network and the latter principally implicating the subcortical network, indicative of distinct neuropathological mechanisms underlying cHR and gHR. By contrast, brain structural damage networks of FES and ChS manifested as similar patterns of widespread brain areas predominantly involving the somatomotor, ventral attention, and subcortical networks, suggesting an emergence of more prominent brain structural abnormalities with illness onset that have trait-like stability over time.
Conclusions
Our findings may not only provide a refined picture of schizophrenia neuropathology from a network perspective, but also potentially contribute to more targeted and effective intervention strategies for individuals at different schizophrenia stages.
Late-life depression (LLD) predisposes individuals to cognitive decline, often leading to misdiagnoses as mild cognitive impairment (MCI). Voxel-based morphometry (VBM) can distinguish the profiles of these disorders according to gray matter (GM) volumes. We integrated findings from previous VBM studies for comparative analysis and extended the research into molecular profiles to facilitate inspection and intervention.
Methods
We comprehensively searched PubMed and Web of Science for VBM studies that compared LLD and MCI cases with matched healthy controls (HCs) from inception to 31st December 2023. We included 13 studies on LLD (414 LLDs, 350 HCs) and 50 on MCI (1878 MCIs, 2046 HCs). Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) was used for voxel-based meta-analysis to assess GM atrophy, spatially correlated with neuropsychological profiles. We then used multimodal and linear-model analysis to assess the similarities and differences in GM volumetric changing patterns. Partial least squares (PLS) regression and gene enrichment were employed for transcription-neuroimaging associations.
Results
GM volumes in the left hippocampus and right parahippocampal gyrus are more affected in MCI, along with memory impairment. MCI was spatially correlated with a more extensive reduction in the levels of neurotransmitters and a severe downregulation of genes related to cellular potassium ion transport and metal ion transmembrane transporter activity.
Conclusion
Compared to LLD, MCI exhibited more GM atrophy in the hippocampus and parahippocampal gyrus and lower gene expression of ion transmembrane transport. Our findings provided imaging-transcriptomic-genetic integrative profiles for differential diagnosis and precise intervention between LLD and MCI.
Investigations of computerised cognitive training (CCT) show heterogeneous results in slowing age-related cognitive decline.
Aims
To comprehensively evaluate the effectiveness of serious games-based CCT, integrating control conditions, neurophysiological and blood-based biomarkers, and subjective measures.
Method
In this bi-centric randomised controlled trial with parallel groups, 160 participants (mean age 71.3 years) with cognitive impairment ranging from subjective decline to mild cognitive impairment, were pseudo-randomised to three arms: an intervention group receiving CCT immediately, an active control (watching documentaries) and a waitlist condition, which both started the CCT intervention after the control period. Both active arms entailed a 3-month intervention period comprising a total of 60 at-home sessions (five per week) and weekly on-site group meetings. In the intervention group, this was followed by additional 6 months of CCT, with monthly booster sessions to assess long-term training effects. Behavioural and subjective changes were assessed in 3-month intervals. Biological effects were measured by amyloid blood markers and magnetic resonance imaging obtained before and after training.
Results
Adherence to the training protocol was consistently high across groups and time points (4.87 sessions per week). Domain-specific cognitive scores showed no significant interaction between groups and time points. Significant cognitive and subjective improvements were observed after long-term training. Voxel-based morphometry revealed no significant changes in grey matter volume following CCT, nor did amyloid levels moderate its effectiveness.
Conclusions
Our study demonstrates no benefits of 3 months of CCT on cognitive or biological outcomes. However, positive effects were observed subjectively and after long-term CCT, warranting the inclusion of CCT in multicomponent interventions.
Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations.
Methods:
In 410 male and female participants aged 17–35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites.
Results:
Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake.
Conclusions:
Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.
There is increasing evidence that resilience in youth may have a neurobiological basis. However, the existing literature lacks a consistent way of operationalizing resilience, often relying on arbitrary judgments or narrow definitions (e.g., not developing PTSD) to classify individuals as resilient. Therefore, this study used data-driven, continuous resilience scores based on adversity and psychopathology to investigate associations between resilience and brain structure in youth. Structural MRI data from 298 youth aged 9–18 years (Mage = 13.51; 51% female) who participated in the European multisite FemNAT-CD study were preprocessed using SPM12 and analyzed using voxel-based morphometry. Resilience scores were derived by regressing data on adversity exposure against current/lifetime psychopathology and quantifying each individual’s distance from the regression line. General linear models tested for associations between resilience and gray matter volume (GMV) and examined whether associations between resilience and GMV differed by sex. Resilience was positively correlated with GMV in the right inferior frontal and medial frontal gyri. Sex-by-resilience interactions were observed in the middle temporal and middle frontal gyri. These findings demonstrate that resilience in youth is associated with volume in brain regions implicated in executive functioning, emotion regulation, and attention. Our results also provide evidence for sex differences in the neurobiology of resilience.
Binge eating disorder (BED) is a pernicious psychiatric disorder which is linked with broad medical and psychiatric morbidity, and obesity. While BED may be characterized by altered cortical morphometry, no evidence to date examined possible sex-differences in regional gray matter characteristics among those with BED. This is especially important to consider in children, where BED symptoms often emerge coincident with rapid gray matter maturation.
Methods
Pre-adolescent, 9–10-year old boys (N = 38) and girls (N = 33) with BED were extracted from the 3.0 baseline (Year 0) release of the Adolescent Brain Cognitive Development Study. We investigated sex differences in gray matter density (GMD) via voxel-based morphometry. Control sex differences were also assessed in age and body mass index and developmentally matched control children (boys N = 36; girls N = 38). Among children with BED, we additionally assessed the association between dorsolateral prefrontal (dlPFC) GMD and parent-reported behavioral approach and inhibition tendencies.
Results
Girls with BED uniquely demonstrate diffuse clusters of greater GMD (p < 0.05, Threshold Free Cluster Enhancement corrected) in the (i) left dlPFC (p = 0.003), (ii) bilateral dmPFC (p = 0.004), (iii) bilateral primary motor and somatosensory cortex (p = 0.0003) and (iv) bilateral precuneus (p = 0.007). Brain-behavioral associations suggest a unique negative correlation between GMD in the left dlPFC and behavioral approach tendencies among girls with BED.
Conclusions
Early-onset BED may be characterized by regional sex differences in terms of its underlying gray matter morphometry.
Numerous studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed differences in specific brain regions of patients with bipolar disorder (BD), but the results have been inconsistent.
Methods
A whole-brain voxel-wise meta-analysis was conducted on resting-state functional imaging and VBM studies that compared differences between patients with BD and healthy controls using Seed-based d Mapping with Permutation of Subject Images software.
Results
A systematic literature search identified 51 functional imaging studies (1842 BD and 2190 controls) and 83 VBM studies (2790 BD and 3690 controls). Overall, patients with BD displayed increased resting-state functional activity in the left middle frontal gyrus, right inferior frontal gyrus (IFG) extending to the right insula, right superior frontal gyrus and bilateral striatum, as well as decreased resting-state functional activity in the left middle temporal gyrus extending to the left superior temporal gyrus and post-central gyrus, left cerebellum, and bilateral precuneus. The meta-analysis of VBM showed that patients with BD displayed decreased VBM in the right IFG extending to the right insula, temporal pole and superior temporal gyrus, left superior temporal gyrus extending to the left insula, temporal pole, and IFG, anterior cingulate cortex, left superior frontal gyrus (medial prefrontal cortex), left thalamus, and right fusiform gyrus.
Conclusions
The multimodal meta-analyses suggested that BD showed similar patterns of aberrant brain activity and structure in the insula extending to the temporal cortex, fronto-striatal-thalamic, and default-mode network regions, which provide useful insights for understanding the underlying pathophysiology of BD.
Negative symptoms are one of the most incapacitating features of Schizophrenia but their pathophysiology remains unclear. They have been linked to alterations in grey matter in several brain regions, but findings have been inconsistent. This may reflect the investigation of relatively small patient samples, and the confounding effects of chronic illness and exposure to antipsychotic medication. We sought to address these issues by investigating concurrently grey matter volumes (GMV) and cortical thickness (CTh) in a large sample of antipsychotic-naïve or minimally treated patients with First-Episode Schizophrenia (FES).
Methods
T1-weighted structural MRI brain scans were acquired from 180 antipsychotic-naïve or minimally treated patients recruited as part of the OPTiMiSE study. The sample was stratified into subgroups with (N = 88) or without (N = 92) Prominent Negative Symptoms (PMN), based on PANSS ratings at presentation. Regional GMV and CTh in the two groups were compared using Voxel-Based Morphometry (VBM) and FreeSurfer (FS). Between-group differences were corrected for multiple comparisons via Family-Wise Error (FWE) and Monte Carlo z-field simulation respectively at p < 0.05 (2-tailed).
Results
The presence of PMN symptoms was associated with larger left inferior orbitofrontal volume (p = 0.03) and greater CTh in the left lateral orbitofrontal gyrus (p = 0.007), but reduced CTh in the left superior temporal gyrus (p = 0.009).
Conclusions
The findings highlight the role of orbitofrontal and temporal cortices in the pathogenesis of negative symptoms of Schizophrenia. As they were evident in generally untreated FEP patients, the results are unlikely to be related to effects of previous treatment or illness chronicity.
Neuroimaging studies on major depressive disorder (MDD) have identified an extensive range of brain structural abnormalities, but the exact neural mechanisms associated with MDD remain elusive. Most previous studies were performed with voxel- or surface-based morphometry which were univariate methods without considering spatial information across voxels/vertices.
Methods
Brain morphology was investigated using voxel-based morphometry (VBM) and source-based morphometry (SBM) in 1082 MDD patients and 990 healthy controls (HCs) from the REST-meta-MDD Consortium. We first examined group differences in regional grey matter (GM) volumes and structural covariance networks between patients and HCs. We then compared first-episode, drug-naïve (FEDN) patients, and recurrent patients. Additionally, we assessed the effects of symptom severity and illness duration on brain alterations.
Results
VBM showed decreased GM volume in various regions in MDD patients including the superior temporal cortex, anterior and middle cingulate cortex, inferior frontal cortex, and precuneus. SBM returned differences only in the prefrontal network. Comparisons between FEDN and recurrent MDD patients showed no significant differences by VBM, but SBM showed greater decreases in prefrontal, basal ganglia, visual, and cerebellar networks in the recurrent group. Moreover, depression severity was associated with volumes in the inferior frontal gyrus and precuneus, as well as the prefrontal network.
Conclusions
Simultaneous application of VBM and SBM methods revealed brain alterations in MDD patients and specified differences between recurrent and FEDN patients, which tentatively provide an effective multivariate method to identify potential neurobiological markers for depression.
Neuroimaging research has shown that patients with schizophrenia (SCZ) present brain structural and functional alterations, but the results across imaging modalities and task paradigms are difficult to reconcile. Specifically, no meta-analyses have tested whether the same brain systems that are structurally different in SCZ patients are also involved in neurocognitive and social cognitive tasks. To answer this, we conducted separate meta-analyses of voxel-based morphometry, neurocognitive functional magnetic resonance imaging (fMRI), and social cognitive fMRI studies. Next, with a multimodal approach, we identified the common alterations across meta-analyses. Further exploratory meta-analyses were performed taking into account several clinical variables (illness duration, medication status, and symptom severity). A cluster covering the dorsomedial prefrontal cortex (dmPFC) and the supplementary motor area (SMA), and the right inferior frontal gyrus (IFG), presented shared structural and neurocognitive-related activation decreases, while the right angular gyrus presented shared decreases between structural and social cognitive-related activation. The exploratory meta-analyses replicated to some extent these findings, while new regions of alterations appeared in patient subgroups with specific clinical features. In conclusion, we found task-specific correlates of brain structure and function in SCZ, which help summarize and integrate a growing literature.
Cognitive theories of depression contend that biased cognitive information processing plays a causal role in the development of depression. Extensive research shows that deeper processing of negative and/or shallower processing of positive self-descriptors (i.e., negative and positive self-schemas) predicts current and future depression in adults and children. However, the neural correlates of the development of self-referent encoding are poorly understood. We examined children's self-referential processing using the self-referent encoding task (SRET) collected from 74 children at ages 6, 9, and 12; around age 10, these children also contributed structural magnetic resonance imaging data. From age 6 to age 12, both positive and negative self-referential processing showed mean-level growth, with positive self-schemas increasing relatively faster than negative ones. Further, voxel-based morphometry showed that slower growth in positive self-schemas was associated with lower regional gray matter volume (GMV) in ventrolateral prefrontal cortex (vlPFC). Our results suggest that smaller regional GMV within vlPFC, a critical region for regulatory control in affective processing and emotion development, may have implications for the development of depressogenic self-referential processing in mid-to-late childhood.
Characterizing neuroanatomical markers of different stages of schizophrenia (SZ) to assess of how the disorder develops is extremely important for the clinical practice. It still remains uncertain how abnormalities are formed as SZ progresses.
Objectives
We reviewed and analyzed 113 voxel based morphometry studies on people at risk of or with schizophrenia to assess GM alterations at different stages of the disorder and to functionally characterize these GM variations.
Methods
We performed a meta-analysis of voxel-based morphometry studies of genetic and clinical high-risk subjects (g-/c-HR), recently diagnosed (RDSZ) and chronic SZ patients (ChSZ). We quantified gray matter (GM) changes associated with these four conditions and compared them with contrast and conjunctional data. We performed the behavioral analysis and networks decomposition of alterations to obtain their functional characterization.
Results
Compared to previous investigations, results reveal a robust cortical-subcortical, left-to-right homotopic progression of GM loss. The right anterior cingulate is the only altered region in all conditions. Contrast analyses show left-lateralized insular, amygdalar and parahippocampal GM reduction in RDSZ, which appears bilateral in ChSZ. An overlap between RDSZ and ChSZ is observed in the left insula, amygdala, precentral and inferior frontal gyri. Functional decomposition shows involvement of the salience network, with an enlargement of the sensorimotor network in RDSZ and the thalamus-basal nuclei network in ChSZ.
Conclusions
These results can help the research on diagnostic and neuroimaging biomarkers of SZ staging, as well as on the identification of new therapeutics neuroanotomic targets that could be addressed with focused magnetic or non-invasive electric stimulation.
Two prominent risk factors for major depressive disorder (MDD) are childhood maltreatment (CM) and familial risk for MDD. Despite having these risk factors, there are individuals who maintain mental health, i.e. are resilient, whereas others develop MDD. It is unclear which brain morphological alterations are associated with this kind of resilience. Interaction analyses of risk and diagnosis status are needed that can account for complex adaptation processes, to identify neural correlates of resilience.
Methods
We analyzed brain structural data (3T magnetic resonance imaging) by means of voxel-based morphometry (CAT12 toolbox), using a 2 × 2 design, comparing four groups (N = 804) that differed in diagnosis (healthy v. MDD) and risk profiles (low-risk, i.e. absence of CM and familial risk v. high-risk, i.e. presence of both CM and familial risk). Using regions of interest (ROIs) from the literature, we conducted an interaction analysis of risk and diagnosis status.
Results
Volume in the left middle frontal gyrus (MFG), part of the dorsolateral prefrontal cortex (DLPFC), was significantly higher in healthy high-risk individuals. There were no significant results for the bilateral superior frontal gyri, frontal poles, pars orbitalis of the inferior frontal gyri, and the right MFG.
Conclusions
The healthy high-risk group had significantly higher volumes in the left DLPFC compared to all other groups. The DLPFC is implicated in cognitive and emotional processes, and higher volume in this area might aid high-risk individuals in adaptive coping in order to maintain mental health. This increased volume might therefore constitute a neural correlate of resilience to MDD in high risk.
To explore motor praxis in adults with Prader–Willi syndrome (PWS) in comparison with a control group of people with intellectual disability (ID) and to examine the relationship with brain structural measurements.
Method:
Thirty adult participants with PWS and 132 with ID of nongenetic etiology (matched by age, sex, and ID level) were assessed using a comprehensive evaluation of the praxis function, which included pantomime of tool use, imitation of meaningful and meaningless gestures, motor sequencing, and constructional praxis.
Results:
Results support specific praxis difficulties in PWS, with worse performance in the imitation of motor actions and better performance in constructional praxis than ID peers. Compared with both control groups, PWS showed increased gray matter volume in sensorimotor and subcortical regions. However, we found no obvious association between these alterations and praxis performance. Instead, praxis scores correlated with regional volume measures in distributed apparently normal brain areas.
Conclusions:
Our findings are consistent in showing significant impairment in gesture imitation abilities in PWS and, otherwise, further indicate that the visuospatial praxis domain is relatively preserved. Praxis disability in PWS was not associated with a specific, focal alteration of brain anatomy. Altered imitation gestures could, therefore, be a consequence of widespread brain dysfunction. However, the specific contribution of key brain structures (e.g., areas containing mirror neurons) should be more finely tested in future research.
Previous case–control studies of autistic spectrum disorder (ASD) have identified altered brain structure such as altered frontal and temporal cortex volumes, or decreased fractional anisotropy (FA) within the inferior fronto-occipital fasciculus in patients. It remains unclear whether subclinical autistic-like traits might also be related to variation in these brain structures.
Methods
In this study, we analyzed magnetic resonance imaging (MRI) data of 250 psychiatrically healthy subjects phenotyped for subclinical autistic-like traits using the Autism Spectrum Quotient (AQ). For data analysis, we used voxel-based morphometry of T1-MRIs (Computational Anatomy Toolbox) and tract-based spatial statistics for diffusion tensor imaging data.
Results
AQ attention switching subscale correlated negatively with FA values in the bilateral uncinate fasciculus as well as the bilateral inferior fronto-occipital fasciculus. Higher AQ attention switching subscale scores were associated with increased mean diffusivity and radial diffusivity values in the uncinate fasciculus, while axial diffusivity values within this tract show a negative correlation. AQ attention to detail subscale correlated positively with gray matter volume in the right pre- and postcentral gyrus.
Conclusions
We demonstrate that individuals with higher levels of autism-spectrum-like features show decreased white matter integrity in tracts associated with higher-level visual processing and increased cortical volume in areas linked to movement sequencing and working memory. Our results resemble regional brain structure alterations found in individuals with ASD. This offers opportunities to further understand the etiology and pathogenesis of the disorder and shows a subclinical continuum perspective.
Subclinical psychotic-like experiences (PLE), resembling key symptoms of psychotic disorders, are common throughout the general population and possibly associated with psychosis risk. There is evidence that such symptoms are also associated with structural brain changes.
Methods
In 672 healthy individuals, we assessed PLE and associated distress with the symptom-checklist-90R (SCL-90R) scales ‘schizotypal signs’ (STS) and ‘schizophrenia nuclear symptoms’ (SNS) and analysed associations with voxel- and surfaced-based brain structural parameters derived from structural magnetic resonance imaging at 3 T with CAT12.
Results
For SNS, we found a positive correlation with the volume in the left superior parietal lobule and the precuneus, and a negative correlation with the volume in the right inferior temporal gyrus [p < 0.05 cluster-level Family Wise Error (FWE-corrected]. For STS, we found a negative correlation with the volume of the left and right precentral gyrus (p < 0.05 cluster-level FWE-corrected). Surface-based analyses did not detect any significant clusters with the chosen statistical threshold of p < 0.05. However, in exploratory analyses (p < 0.001, uncorrected), we found a positive correlation of SNS with gyrification in the left insula and rostral middle frontal gyrus and of STS with the left precuneus and insula, as well as a negative correlation of STS with gyrification in the left temporal pole.
Conclusions
Our results show that brain structures in areas implicated in schizophrenia are also related to PLE and its associated distress in healthy individuals. This pattern supports a dimensional model of the neural correlates of symptoms of the psychotic spectrum.
While functional neuroimaging studies on attention and executive function in schizophrenia have reported several functionally aberrant cortical regions, less is known about the relationship of cognitive impairment and regional volume alterations. In order to investigate the relationship between cognitive impairment and structural alterations, we studied healthy control subjects and partially remitted, medicated inpatients with DSM-IV schizophrenia using voxel-based morphometry (VBM) and a standardised neuropsychological test battery. Schizophrenic patients showed reduced grey matter (GM) density in the bilateral temporal cortex, the left inferior parietal lobule, the cingulate gyrus and the left middle frontal gyrus. Reduced GM volume was additionally found in the left hippocampal gyrus and the right superior frontal cortex. Reduced white matter density was found in the posterior corpus callosum. Structure-cognition regression analyses revealed that decreased GM density of the left inferior parietal and the right middle temporal cortex was associated with worse performance during divided attention. Worse performance during the spatial span was associated with volumetric abnormalities of the hippocampal gyrus. These results indicate that regional abnormalities in brain structure may offer an account for some impaired cognitive domains in patients with schizophrenia, while other cognitive domains may remain relatively less affected by volumetric alterations.
L’étude des facteurs de vulnérabilité à la schizophrénie est un enjeu majeur de la psychiatrie actuelle [3]. Nous avons donc réalisé une étude dans l’objectif d’expliciter les liens existant entre traumatismes subis dans l’enfance et anomalies anatomiques observées dans la schizophrénie.
Patients et méthode
Au total 26 sujets schizophrènes stabilisés par rispéridone ou aripiprazole depuis au moins 6 semaines et 31 volontaires sains appariés ont été inclus. La sévérité des traumatismes infantiles a été évaluée avec la Childhood Trauma Questionnaire (CTQ). L’analyse en Voxel-Based Morphometry (VBM) a été réalisée à partir d’IRM anatomiques haute résolution en veillant à la qualité du prétraitement [1] et après correction pour les comparaisons multiples.
Résultats
En cohérence avec notre hypothèse principale, il a été retrouvé une corrélation négative entre la négligence émotionnelle dans l’enfance et le volume total de matière grise chez les schizophrènes (Δ = −0,50 ; p = 0,003 après ajustement sur l’âge, le sexe et le niveau éducatif). La même tendance est retrouvée non significative chez les volontaires sains. Outre cet effet global, il existe une corrélation négative entre la négligence émotionnelle et la densité de matière grise des schizophrènes dans le cortex cingulaire antérieur dorsal gauche (Z-score = 3,9 ; pFWE = 0,046) et le cortex préfrontal dorsolatéral droit (Z-score = 4,19 ; pFWE = 0,002). La comparaison de la densité de matière grise entre sujets schizophrènes et volontaires sains révèle des diminutions de densités centrées sur la partie antérieure des insula et le gyrus temporal supérieur gauche.
Conclusion
Ce résultat original démontre l’impact des interactions précoces, auxquelles les schizophrènes semblent particulièrement sensibles, sur la morphologie cérébrale. Les régions retrouvées, cortex cingulaire antérieur dorsal et cortex préfrontal dorsolatéral, sont particulièrement impliquées dans les troubles cognitifs et la dimension de désorganisation de la schizophrénie [2].
Abnormal brain connectivity has recently been reported in obsessive compulsive disorder (OCD). However, structural differences in the corpus callosum (CC), the primary structure connecting the two hemispheres, have not been extensively studied. In this case-control study, we recruited 30 patients with OCD and 30 healthy control subjects carefully matched for age, sex and handedness. Combining surface-based mesh-modeling and voxel-based morphometry (VBM), we compared callosal thickness and white matter (WM) density in patients and controls. We investigated associations between callosal structure and cortical gray matter (GM) density, and we related CC measures to neuropsychological performance in OCD. OCD patients showed small anterior and posterior callosal regions compared to healthy control subjects. In the OCD group, anterior callosal thickness was positively correlated with GM density of the right mid-dorso-lateral prefrontal (BA 9/46) area, while posterior callosal thickness was positively correlated with GM density in the left supramarginal gyrus (BA 40). Moreover, posterior callosal WM density was positively correlated with verbal memory, visuo-spatial memory, verbal fluency, and visuo-spatial reasoning performances. Callosal attributes were related to GM density in cortical areas innervated by the CC, and were also related to performance in cognitive domains impaired in the disorder. The CC may therefore be integrally involved in OCD.
People with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) have abnormalities in frontal, temporal, parietal and striato-thalamic networks. It is unclear to what extent these abnormalities are distinctive or shared. This comparative meta-analysis aimed to identify the most consistent disorder-differentiating and shared structural and functional abnormalities.
Methods
Systematic literature search was conducted for whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies of cognitive control comparing people with ASD or ADHD with typically developing controls. Regional gray matter volume (GMV) and fMRI abnormalities during cognitive control were compared in the overall sample and in age-, sex- and IQ-matched subgroups with seed-based d mapping meta-analytic methods.
Results
Eighty-six independent VBM (1533 ADHD and 1295 controls; 1445 ASD and 1477 controls) and 60 fMRI datasets (1001 ADHD and 1004 controls; 335 ASD and 353 controls) were identified. The VBM meta-analyses revealed ADHD-differentiating decreased ventromedial orbitofrontal (z = 2.22, p < 0.0001) but ASD-differentiating increased bilateral temporal and right dorsolateral prefrontal GMV (zs ⩾ 1.64, ps ⩽ 0.002). The fMRI meta-analyses of cognitive control revealed ASD-differentiating medial prefrontal underactivation but overactivation in bilateral ventrolateral prefrontal cortices and precuneus (zs ⩾ 1.04, ps ⩽ 0.003). During motor response inhibition specifically, ADHD relative to ASD showed right inferior fronto-striatal underactivation (zs ⩾ 1.14, ps ⩽ 0.003) but shared right anterior insula underactivation.
Conclusions
People with ADHD and ASD have mostly distinct structural abnormalities, with enlarged fronto-temporal GMV in ASD and reduced orbitofrontal GMV in ADHD; and mostly distinct functional abnormalities, which were more pronounced in ASD.