Experimental investigations of heavy-ion-generated shock waves in
solid, multilayered targets were performed by applying a Schlieren and
a laser-deflection technique. Shock velocity and the corresponding
pressures, temporal and spatial density profiles inside the material
compressed by multiple shock waves, and details of the shock dynamics
were determined. Important for equation-of-state and phase transition
studies, such experiments extend their relevance to inertial
confinement fusion and astrophysical fundamental research.