We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study was conducted for establishing inherent uncertainty in the shift determination by X-ray volumetric imaging (XVI) and calculating margins due to this inherent uncertainty using van Herk formula.
Material and methods
The study was performed on the XVI which was cone-beam computed tomography integrated with the Elekta AxesseTM linear accelerator machine having six degree of freedom enabled HexaPOD couch. Penta-Guide phantom was used for inherent translational and rotational shift determination by repeated imaging. The process was repeated 20 times a day without moving the phantom for 30 consecutive working days. The measured shifts were used for margins calculation using van Herk formula.
Results
The mean standard deviations were calculated as 0·05, 0·05, 0·06 mm in the three translational (x, y and z) and 0·05°, 0·05°, 0·05° in the three rotational axes (about x, y, z). Paired sample t-test was performed between the mean values of translational shifts (x, y, z) and rotational shifts. The systematic errors were found to be 0·03, 0·04 and 0·03 mm while the random errors were 0·05, 0·06 and 0·06 mm in the lateral, cranio-caudal and anterio-posterior directions, respectively. For the rotational shifts, the systematic errors were 0·02, 0·03 and 0·03 and the random errors were 0·06, 0·05 and 0·05 in the pitch, roll and yaw directions, respectively.
Conclusion
Our study concluded that there was an inherent uncertainty associated with the XVI tools, on the basis of these six-dimensional shifts, margins were calculated and recorded as a baseline for the quality assurance (QA) programme for XVI imaging tools by checking its reproducibility once in a year or after any major maintenance in hardware or upgradation in software. Although the shift determined was of the order of submillimetre order, still that shift had great significance for the image quality control of the XVI tools. Every departments practicing quality radiotherapy with such imaging tools should establish their own baseline value of inherent shifts and margins during the commissioning and must use an important QA protocol for the tools.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.