We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The human brain’s motor system, including the motor cortex and corticospinal system, the premotor cortex, basal ganglia, and cerebellum, together with input from sensory and polymodal association cortex, can program almost an infinite number of actions. Therefore, to successfully interact with the environment and ourselves we need the guidance provided by motor programs. There are two major forms of programs, action-intentional (the “when” system) and motor-praxic (the “how” system). The action-intentional system programs when to initiate an action, persist at an action, and terminate an action, or when not to act. The motor-praxic system programs the postures and joint movements required for correct interactions, as well as the speed, force, and sequence of these actions. This chapter describes how different elements of these two major forms of motor programs change with aging as well as the influence of aging on motor learning. The mechanisms that induce the aging-related changes in motor programming, motor skill learning, and motor performance are not fully known; however, in this chapter we discuss the various types of aging-related changes, their possible mechanisms, and how some of the changes can be limited and/or treated.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.