Traditional techniques for calculating outstanding claim liabilities such as the chain-ladder are notoriously at risk of being distorted by outliers in past claims data. Unfortunately, the literature in robust methods of reserving is scant, with notable exceptions such as Verdonck & Debruyne (2011, Insurance: Mathematics and Economics, 48, 85–98) and Verdonck & Van Wouwe (2011, Insurance: Mathematics and Economics, 49, 188–193). In this paper, we put forward two alternative robust bivariate chain-ladder techniques to extend the approach of Verdonck & Van Wouwe (2011, Insurance: Mathematics and Economics, 49, 188–193). The first technique is based on Adjusted Outlyingness (Hubert & Van der Veeken, 2008. Journal of Chemometrics, 22, 235–246) and explicitly incorporates skewness into the analysis while providing a unique measure of outlyingness for each observation. The second technique is based on bagdistance (Hubert et al., 2016. Statistics: Methodology, 1–23) which is derived from the bagplot; however; it is able to provide a unique measure of outlyingness and a means to adjust outlying observations based on this measure.
Furthermore, we extend our robust bivariate chain-ladder approach to an N-dimensional framework. The implementation of the methods, especially beyond bivariate, is not trivial. This is illustrated on a trivariate data set from Australian general insurers and results under the different outlier detection and treatment mechanisms are compared.