By using Lebesgue’s dominated convergence theorem and constructing a suitable Lyapunov functional, we study the following almost-periodic Lotka–Volterra model with $M$ predators and $N$ prey of the integro-differential equations
\begin{alignat*}{2} \dot{x}_i(t)\amp=x_i(t)\biggl[b_i(t)-a_{ii}(t)x_i(t)-\sum_{k=1,k\neq i}^{N}a_{ik}(t)\int_{-\infty}^tH_{ik}(t-\sigma)x_k(\sigma)\,\mathrm{d}\sigma\\ \amp\hskip45mm-\sum_{l=1}^{M}c_{il}(t)\int_{-\infty}^tK_{il}(t-\sigma)y_l(\sigma)\,\mathrm{d}\sigma\biggr],\amp\quad i\amp=1,2,\dots,N,\\ \dot{y}_j(t)\amp=y_j(t)\biggl[-r_j(t)-e_{jj}(t)y_j(t) +\sum_{k=1}^{N}d_{jk}(t)\int_{-\infty}^tP_{jk}(t-\sigma)x_k(\sigma)\,\mathrm{d}\sigma \\ \amp\hskip45mm-\sum_{l=1,l\neq j}^{M} e_{jl}(t)\int_{-\infty}^tQ_{jl}(t-\sigma)y_l(\sigma)\,\mathrm{d}\sigma\biggr],\amp\quad j\amp=1,2,\dots,M. \end{alignat*}
Some sufficient conditions are obtained for the existence of a unique almost-periodic solution of this model. Several examples show that the obtained criteria are new, general and easily verifiable.