We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to determine the distribution and subcellular localisation of aquaporin 2 and vasopressin type 2 receptor in the human endolymphatic sac.
Methods
Ten samples of human endolymphatic sac were collected during acoustic neurinoma removal using the translabyrinthine approach. Immunohistochemistry and immunofluorescence were performed using aquaporin 2 and vasopressin type 2 receptor monoclonal antibodies.
Results
Confocal microscopy demonstrated that vasopressin type 2 receptor labelling was expressed in both the apical and basolateral plasma membranes, and in the cytoplasm of the endolymphatic sac epithelium, whereas aquaporin 2 was strongly expressed at the basolateral site of the endolymphatic sac epithelium, in both the intraosseous and extraosseous parts of the endolymphatic sac.
Conclusion
Both aquaporin 2 and vasopressin type 2 receptor were detected in the epithelial cells of the human endolymphatic sac, suggesting that this channel may be involved in inner-ear fluid homeostasis. However, strong basolateral expression of aquaporin 2 in endolymphatic sac epithelium suggested that the function of aquaporin 2 may differ between the endolymphatic sac and kidney.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.