We study the existence and multiplicity of periodic weak solutions for a non-local equation involving an odd subcritical nonlinearity which is asymptotically linear at infinity. We investigate such problem by applying the pseudo-index theory developed by Bartolo, Benci and Fortunato [11] after transforming the problem to a degenerate elliptic problem in a half-cylinder with a Neumann boundary condition, via a Caffarelli-Silvestre type extension in periodic setting. The periodic nonlocal case, considered here, presents, respect to the cases studied in the literature, some new additional difficulties and a careful analysis of the fractional spaces involved is necessary.