A laser transmission experiment is conducted to examine atmospheric turbulence-induced angle-of-arrival fluctuations over an 11.8 km urban path. The variance of fluctuations, probability density function, power spectrum, and Fried coherence length are investigated based on the analysis of the experimental data collected in each season of a year, respectively. In addition, the daily variations characteristic of path-averaged optical turbulence intensity Cn2 is also studied. At last, the aperture averaging theory is validated. It is anticipated that this work is helpful to the research of optical wave atmospheric propagation and the design of free-space laser optics communication systems.