Residual torsion-free nilpotence has proved to be an important property for knot groups with applications to bi-orderability and ribbon concordance. Mayland proposed a strategy to show that a two-bridge knot group has a commutator subgroup which is a union of an ascending chain of para-free groups. This paper proves Mayland’s assertion and expands the result to the subgroups of two-bridge link groups that correspond to the kernels of maps to $\mathbb{Z}$. We call these kernels the Alexander subgroups of the links. As a result, we show the bi-orderability of a large family of two-bridge link groups. This proof makes use of a modified version of a graph-theoretic construction of Hirasawa and Murasugi in order to understand the structure of the Alexander subgroup for a two-bridge link group.