We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The increasing demand for food and especially proteins leads to the search for alternative protein sources. Meat co-products, which are available but little used in human food, provide a potential solution to this challenge. The present study aimed to evaluate the nutritional quality of two beef protein ingredients (greasy greaves recovered proteins (GGRP) and water recovered proteins (WRP)), both co-products of the fat rendering process. Their true ileal digestibility (TID), digestible indispensable amino acid score (DIAAS) and kinetics of plasma amino acids (AA) were measured in ten growing pigs, each fed the two co-products and a protein-free diet. Titanium dioxide was used as an indigestible marker. Digesta samples were collected for 9 h after meal ingestion, and blood samples were collected at ten time points during the same period. Total nitrogen (N) and AA contents were determined. Data were statistically analysed using linear mixed models. The TID of total N was not different between WRP and GGRP (81–84 %, P > 0·05). The first-limiting AA was Trp for both ingredients, with a DIAAS much higher for GGRP than for WRP (74 and 10 % for adults, respectively; P < 0·001). Postprandial plasma AA concentration peaked earlier for WRP (3 h) than for GGRP (5 h). Plasma concentrations of total and essential AA were higher (P < 0·001) with GGRP diet than WRP diet. Overall, GGRP has a nutritional quality suitable to meet the needs of adults for AA, while WRP needs to be supplemented with other protein sources to fulfil the dietary requirements.
The paper focuses on the Pleistocene deposits in Perspektywiczna Cave, southern Poland, related to cave hyena (Crocuta crocuta). We used direct radiocarbon dating of hyena fossils supported by genetic and stable isotope analyses to infer the paleobiology of this population. Radiocarbon dating of 19 hyena remains suggests long inhabitation of the region during early MIS 3, around 50–34 ky cal BP. The youngest among our dates, 34,355–33,725 cal BP (1σ, combined of two dates for the same specimen) points out the latest appearance of a cave hyena north to Carpathians. Beside this long period of occupation, the Perspektywiczna Cave hyenas stayed ecologically stable, but their genetic structure changed. Two mtDNA haplogroups were present, one typical for other Late Pleistocene European populations and the other one known so far only from recent African populations.
Dental tissues, together with dental calculus or tartar which builds up on the tooth surface in life, are mineral/organic composites. This chapter introduces the minerals present in the inorganic component and discusses variation in their chemistry, both through the thickness of tissue and between individual teeth. It goes on to describe the organic component, primarily a mixture of proteins and peptides. One of the main foci of research is in the field of stable isotopes, which have been used to reconstruct past human diet and mobility, dating of remains (and age-at-death for forensic cases) and the history of pollution.
There is a consensus in the literature that radiocarbon dating performed on bioapatite often produces ages younger than dating performed on collagen. We propose a general regression that could be used to convert the bioapatite radiocarbon ages to the simulated ages on collagen in fossil samples worldwide. This general regression presents several good indices of quality, high correlation (R2 = 0.98), lower values of percent predicted error (%PE = 0.01), and standard error of the estimate (%SEE = 21.83), showing that it is a good tool, as the predicted values are similar to those observed. Using this regression, we converted the radiocarbon ages of bioapatite to the expected age from the collagen fraction made for several taxa from the Brazilian Intertropical Region (BIR) and suggest that these dates could be 1–7 cal ka BP older than previously thought.
Using the Flory-Huggins theory for uncharged polymer solutions, key concepts of the critical point, coexistence curve, and spinodal curve are presented. These concepts are then generalized to charged systems by explicitly considering restricted primitive model for electrolytes and new developments for polyelectrolyte solutions that include the liquid-liquid phase separation invoked in the formation of membrane-less organelles. Fibrillization in amyloids and collagen is discusses with a focus of electrostatic effects.
The Fragmenta membranea manuscript fragment collection at the National Library of Finland has proved challenging to date using only traditional paleography. Therefore, radiocarbon dates can contribute to the understanding of these fragments by offering a parallel natural scientific timeline for the parchment the manuscripts are written on. In this study, we apply our previously developed method for radiocarbon dating medieval manuscripts made of parchment. In total 35 datings were made from 14 separate assemblages of manuscripts, being the first systematic wide-scale application of radiocarbon dating to a collection of medieval manuscripts in order to improve their chronological proxy. Additionally, due to the fragmentary and sometimes poor condition of the manuscript fragments of Fragmenta membranea analyzed in this study, we used Fourier-transform infrared spectroscopy (FTIR) to evaluate the quality of the collagen and the presence of contaminants in the fragments affecting the radiocarbon dates. We report out radiocarbon dating results and FTIR screenings for each sample and for each manuscript assemblage, and discuss the applicability of our method in further studies of applying radiocarbon dating on objects of cultural historical interest and value. The results indicate an essential role of high-quality samples and multiple measurements to interpret the radiocarbon dating results.
Fetal growth restriction (FGR) is associated with reduced cardiac function in neonates. Uteroplacental insufficiency (UPI) is the most common cause of FGR. The mechanisms underlying these alterations remain unknown. We hypothesized that UPI would influence cardiac development in offspring rats. Through this study, we evaluated the effects of UPI during pregnancy on heart histology and pulmonary hypertension in growth-restricted newborn rats. On gestation Day 18, either UPI was induced through bilateral uterine vessel ligation (FGR group) or sham surgery (control group) was performed. The right middle lobe of the lung and the heart were harvested for histological and immunohistochemical evaluation on postnatal days 0 and 7. The FGR group exhibited significantly lower body weight, hypertrophy and degeneration of cardiomyocytes, increased intercellular spaces between the cardiomyocytes and collagen deposition, and decreased glycogen deposition and HNK-1 expression compared with the control group on postnatal days 0 and 7. These results suggest that neonates with FGR may have inadequate myocardial reserves, which may cause subsequent cardiovascular compromise in future life. Further studies are required to evaluate the hemodynamic changes in these growth-restricted neonates.
Developing tissues have intricate, three-dimensional (3D) organizations of cells and extracellular matrix (ECM) that provide the framework necessary to meet morphogenic and necessary demands. Migrating cells, in vivo, are exposed to numerous conflicting signals: chemokines, ECM, growth factors, and physical forces. While most of these have been studied individually in vivo or in vitro, our understanding of how cells integrate these various signals is lacking. We previously developed a novel self-organizing cellularized collagen hydrogel model that is adaptable, tunable, reproducible, and capable of mimicking the multitude of stimuli that cells experience. Our model produced self-assembled toroids of cells that were formed by 24 h. Data we present here show toroids initially form as early as 3 h after seeding. Additionally, toroids formed when cells were seeded on various collagen subtypes and were sensitive to the composition of the hydrogel. Moreover, we found differences in remodeling in toroid gels compared to gels with cells embedded in them using both a collagen binding peptide and rheology. Using scanning electron microscopy, we observed toroids forming a crater-like structure compared to whole gel contractions in mixed in gels. Finally, when multiple cells were mixed prior to seeding, heterogeneous toroids formed with some containing clusters of cells.
In vitro culture of ovarian tissue containing primordial follicles is an important tool to study the initiation of follicular populations and to develop efficient culture systems to support in vitro follicle growth. Considering that in vitro culture favours oxidative stress, it is very important to supplement culture medium with antioxidant substances such as Aloe vera extract. This study aims to evaluate the effects of different concentrations of Aloe vera on the distribution of collagen fibres in the extracellular matrix, follicular activation, development and survival in bovine ovarian cortical tissues cultured in vitro, as well as on expression of mRNAs for antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxiredoxin 6 (PRDX6) and glutathione peroxidase 1 (GPX1)]. To this end, ovarian cortical tissues were cultured for 6 days in α-MEM alone or supplemented with different concentrations of Aloe vera extract (1.0, 5.0, 10.0 or 50.0%). After culture, fragments were fixed and processed histologically to evaluate follicular morphology and activation, as well as the extracellular matrix by staining with picrosirius red. The levels of mRNA for SOD, CAT, PRDX6 and GPX1 in cultured ovarian tissues were evaluated by real-time polymerase chain reaction (PCR). Ovarian tissues cultured with 10.0 or 50.0% Aloe vera had higher percentages of collagen fibres than tissues cultured in control medium. A significant increase in developing follicles was observed in ovarian tissues cultured in α-MEM alone or supplemented with 10% Aloe vera when compared with fresh control or tissues cultured with 1.0% Aloe vera. Presence of Aloe vera did not influence the percentage of morphologically normal follicles when compared with control medium. Ovarian tissues cultured with 50.0% Aloe vera had higher percentages of morphologically normal follicles than those cultured with 10.0% Aloe vera. Furthermore, 10% Aloe vera significantly increased mRNA levels for PRDX6. In conclusion, 10.0% Aloe vera improves extracellular matrix distribution in cultured tissues and increases the expression of mRNA for PRDX6 after 6 days in vitro.
Protein quality has an important role in increasing satiety. Evidence suggests that whey protein (WP) provides satiety via gastrointestinal hormone secretion. Hydrolysed collagen supplementation can also stimulate the production of incretins and influence satiety and food intake. Thus, we sought to compare the effect of acute supplementation of WP or hydrolysed collagen on post-intervention appetite and energy consumption. This was a randomised, double-blind, crossover pilot study with ten healthy adult women (22·4 years/old) who were submitted to acute intake (single dose) of a beverage containing WP (40 g of concentrated WP) or hydrolysed collagen (40 g). Subjective appetite ratings (feelings of hunger, desire to eat and full stomach) were measured using the Visual Analog Scale (VAS), energy intake was quantified by ad libitum cheese bread consumption 2 hours after supplementation and blood was collected for leptin and glucose determination. There was no difference between treatment groups in the perception of hunger (P = 0·983), desire to eat (P = 0·326), full stomach feeling (P = 0·567) or food consumption (P = 0·168). Leptin concentrations at 60 min post supplementation were higher when subjects received hydrolysed collagen (P = 0·006). Acute supplementation with hydrolysed collagen increased leptin levels in comparison with WP, but had no effect on appetite measured by feelings of hunger, desire to eat, full stomach feeling (VAS) or energy consumption.
The ability to accurately and precisely measure the thickness of biomaterial constructs is critical for characterizing both specific dimensional features and related mechanical properties. However, in the absence of a standardized approach for thickness measurements, a variety of imaging modalities have been employed, which have been associated with varying limits of accuracy, particularly for ultrathin hydrated structures. Electron microscopy (EM), a commonly used modality, yields thickness values for extensively processed and nonhydrated constructs, potentially resulting in overestimated mechanical properties, including elastic modulus and ultimate tensile strength. Confocal laser scanning microscopy (CLSM) has often been used as a nondestructive imaging alternative. However, published CLSM-derived image analysis protocols use arbitrary signal intensity cutoffs and provide minimal information regarding thickness variability across imaged surfaces. To address the aforementioned limitations, we present a standardized, user-independent CLSM image acquisition and analysis approach developed as a custom ImageJ macro and validated with collagen-based scaffolds. In the process, we also quantify thickness discrepancies in collagen-based scaffolds between CLSM and EM techniques, further illustrating the need for improved strategies. Employing the same image acquisition protocol, we also demonstrate that this approach can be used to estimate the surface roughness of the same scaffolds without the use of specialized instrumentation.
Nano-biotechnology crosses the boundaries between physics, biochemistry and bioengineering, and has profound implications for the biomedical engineering industry. This book describes the quantum chemical simulation of a wide variety of molecular systems, with detailed analysis of their quantum chemical properties, individual molecular configurations, and cutting-edge biomedical applications. Topics covered include the basic properties of quantum chemistry and its conceptual foundations, the nanoelectronics and thermodynamics of DNA, the optoelectronic properties of the five DNA/RNA nucleobase anhydrous crystals, and key examples of molecular diode prototypes. A wide range of important applications are described, including protein binding of drugs such as cholesterol-lowering, anti-Parkinson and anti-migraine drugs, and recent developments in cancer biology are also discussed. This modern and comprehensive text is essential reading for graduate students and researchers in multidisciplinary areas of biological physics, chemical physics, chemical engineering, biochemistry and bioengineering.
The position of the Banwell Bone Cave mammal assemblage zone (MAZ) in the mammalian biostratigraphy of the British Isles has been the focus of debate for decades. Dominated by fauna typical of cold environments it was originally linked to the marine oxygen isotope stage (MIS) 4 stadial (ca. 72–59 ka). Subsequently it was argued that the Banwell Bone Cave MAZ more likely relates to the temperate interstadial of MIS 5a (ca. 86–72 ka). It is envisioned that “cold fauna” such as bison and reindeer moved into Britain during stadial MIS 5b (ca. 90 ka) and were subsequently isolated by the rising sea level during MIS 5a. Here we investigate environmental conditions during the Banwell Bone Cave MAZ using bone collagen δ13C and δ15N and tooth enamel δ18O and δ13C isotope analysis. We analyse bison and reindeer from the MAZ type-site, Banwell Bone Cave. Our results show unusually high δ15N values, which we ascribe to arid conditions within a temperate environment. Palaeotemperature estimates derived from enamel δ18O indicate warm temperatures, similar to present day. These results confirm that the Banwell Bone Cave MAZ relates to a temperate interstadial and supports its correlation to MIS 5a rather than MIS 4.
Collagen extraction depends on the state of bone preservation, and the acidity of Brazilian soils often prevents the use of this material for radiocarbon dating. When available, however, bone samples constitute very important chronological records for both archaeological sites and natural depositional sites of specific animals. The extraction of collagen was performed using two filters, the first aiming to remove insoluble contaminants, and the second, a vivaspin ultrafilter 30KD to retain large molecular weight materials. The collagen was liofilized and converted to CO2 by combustion in sealed quartz tubes with CuO and Ag. The graphite was produced by zinc reduction in independently sealed Pyrex™ tubes. In order to verify the accuracy of this protocol, we analyzed a modern bone and four previously dated fragments, including those from the Sixth International Radiocarbon Intercomparison (SIRI), and a fragment of human bone from the Amourins site, a Brazilian shellmound. The results for the known age material are in agreement with the expected and the studied sector of Amourins shellmound was dated 4100–3900 years cal BP from a chronological model performed with charcoal dating found in different stratigraphic layers. Samples were dated at the radiocarbon laboratory of Universidade Federal Fluminense (LAC-UFF) in Brazil.
Destroyed by the eruption of Mount Vesuvius in AD 79, Herculaneum is one of the world's most famous Roman settlements. Exactly how the victims died during the eruption, however, remains unclear. The authors address this issue by examining changes in bone apatite structure and collagen preservation, combined with collagen extraction. Results suggest that the prolonged presence of soft tissue, as well as the stone chambers in which inhabitants had sought shelter, acted as thermal buffers that minimised the heat-induced degradation of skeletal tissues. The results have implications for the interpretation of large residential sites and for contexts where heating and burning is associated with buildings.
Intramuscular connective tissue (IMCT) is mainly composed of several fibrils (known as total collagen (TCol)) linked between each other by different chemical cross-links (CLs), the whole being embedded in a matrix of proteoglycans (PGs). In the field of beef quality, there is limited information on the role of CLs and PGs. Accordingly, several authors suggest that, to investigate the role of IMCT, it is important to investigate them just like TCol and insoluble collagen (ICol). In muscle, there are two other components, the muscle fibres and intramuscular fat (IMF) content. There are limited data on the relationships between these three components of muscle and then on possibility to independently manipulate these characteristics in order to control the final quality of meat. The present study aimed to investigate whether consistent relationships exist between these different components of muscle. Therefore, the present study compared four muscles of two cattle types (dairy and beef) to determine associations between TCol, ICol, CLs and PGs. Data were analysed across and within muscle (M) and animal type (AT) based on residuals. There was a strong M and AT effect for all muscle characteristics and an interaction M × AT for type I muscle fibres and IMF. Correlations between TCol, ICol and their CLs were M- and AT-independent. Total proteoglycans were positively correlated with TCol and ICol in a muscle-dependent manner irrespective of AT, but no correlation was found with CLs. On the contrary, CLs were negatively correlated with the ratio TPGs : TCol in an M-dependent manner, irrespective of AT. TCol, ICol and CLs were positively and negatively correlated with type IIA and IIB+X muscle fibres only in longissimus thoracis (LT) muscle, regardless the AT. Insoluble collagen was the only parameter of IMCT to be correlated with type I muscle fibres but only in LT muscle, irrespective of AT. There was no correlation between PGs and muscle fibre types, but PGs were the only IMCT component to be related with IMF in an M-dependent manner, irrespective of AT. Finally, there was no correlation between muscle fibre types and IMF content within M and AT. This study revealed that there is a strong relationship between IMCT components irrespective of M, an M-dependent relationship between the IMCT components and muscle fibre types and few (only with PGs) or no relationship between IMF and IMCT and muscle fibres.
In recent years, tissue engineering has helped to reduce hospital stays and deaths caused by skin wounds. Scaffolds are one of the main factors that influence the success of any tissue graft. Collagen is one of the main components of the extracellular matrix, and there has been much interest in new sources for application as a biomaterial. In this work, a tissue engineering scaffold was developed using the electrospinning technique. The chicken skin was used as an alternative source to obtain collagen. The combination of this collagen with elastin was successfully electrospun, and a distribution of diameters was obtained, less than 100 nm. In vitro tests showed the adhesion and proliferation of the cells, as well as an absence of cytotoxicity from non–cross-linked scaffolds and scaffolds that were cross-linked with carbonyldiimidazole. The structure and composition of the developed scaffolding provide a favorable environment for cell growth and generating a skin substitute.
Although radiocarbon accelerator mass spectrometry (14C AMS) surpasses conventional radiometric methods in many aspects, they still represent an interesting alternative, especially for studies unconstrained by sample size. Here we showed that the gas proportional counting technique can be used for bone samples, processed only by a simple ABA method, and ethanol, distilled from wine samples. The feasibility of the described methods was verified by successful dating of 11 well-preserved vertebrate bones of modern to 21 kyr BP age excavated from different caves in Slovakia from which collagen was also extracted, as well as by determination of 14C concentration in two modern western Slovakia vintages, which matches well the atmospheric Δ14C level for the respective region and grape vegetation period. Various empiric factors affecting the yield of the thoroughly tested procedures used for processing of samples and their optimization parameters are discussed as well.
Radiation therapy, widely used in the treatment of a variety of malignancies in the pelvic area, is associated with inevitable damage to the surrounding healthy tissues. We have applied atomic force microscopy (AFM) to track the early damaging effects of ionizing radiation on the collagen structures in the experimental animals’ bladder and rectum. The first signs of the low-dose radiation (2 Gy) effect were detected by AFM as early as 1 week postirradiation. The observed changes were consistent with initial radiation destruction of the protein matrix. The alterations in the collagen fibers’ packing 1 month postirradiation were indicative of the onset of fibrotic processes. The destructive effect of higher radiation doses was probed 1 day posttreatment. The severity of the radiation damage was proportional to the dose, from relatively minor changes in the collagen packing at 8 Gy to the growing collagen matrix destruction at higher doses and complete three-dimensional collagen network restructuring towards fibrotic-type architecture at the dose of 22 Gy. The AFM study appeared superior to the optical microscopy-based studies in its sensitivity to early radiation damage of tissues, providing valuable additional information on the onset and development of the collagen matrix destruction and remodeling.
In this paper, first results comparing modified Longin and ninhydrin collagen extraction methodologies are presented. The goal of this study is to investigate the bones of several species with different ages, preservation conditions, and collagen contents to determine the most suitable preparation method. Different types of samples are used such as VIRI samples, previously dated bones, and background samples. Each bone has undergone elemental analysis, infrared analysis, and 14C measurement. The results are presented and the advantages and disadvantages of each preparation method are discussed. In general, results obtained by the two methods are in accordance with the consensus value for 2σ uncertainty. For VIRI I and a mammoth bone, the ninhydrin preparation gives, respectively, 8450±70 BP and 14,870±60 BP whereas the modified Longin process gives 8365±45 BP and 14,750±100 BP in agreement with the expected values. From the experimental point of view, the modified Longin process is easier to implement than the ninhydrin protocol. From this approach, we can conclude that the modified Longin process could be preferred in most cases and particularly when the amount of bone is small and the sample is not too contaminated.