The aim of this paper is to investigate and study the possible spectral pair $(\mu_{M,D},\varLambda(M,S))$ associated with the iterated function systems $\{\phi_{d}(x)= M^{-1}(x+d)\}_{d\in D}$ and $\{\psi_{s}(x)=M^{\ast}x+s\}_{s\in S}$ in $\mathbb{R}^n$. For a large class of self-affine measures $\mu_{M,D}$, we obtain an easy check condition for $\varLambda(M,S)$ not to be a spectrum, and answer a question of whether we have such a spectral pair $(\mu_{M,D},\varLambda(M,S))$ in the Eiffel Tower or three-dimensional Sierpinski gasket. Further generalization of the given condition as well as some elementary properties of compatible pairs and spectral pairs are discussed. Finally, we give several interesting examples to illustrate the spectral pair conditions considered here.