We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In photography, the intensity of a 3-D object is imaged and recorded in a 2-D recording medium such as a photographic film or a charge-coupled device (CCD) camera, which responds only to light intensity. Since there is no interference during recording, the phase information of the wave field is not preserved. The loss of the phase information of the light field from the object destroys the 3-D characteristics of the recorded scene, and therefore parallax and depth information of the 3-D object cannot be observed by viewing a photograph. Holography is a technique in which the amplitude and phase information of the light field of the object are recorded through interference. The phase is coded in the interference pattern. The recorded interference pattern is a hologram. It is reminiscent of Young’s interference experiment in which the position of the interference fringes depends on the phase difference between the two sources. Once the hologram of a 3-D object has been recorded, we can reconstruct the 3-D image of the object by simply illuminating the hologram or through digital reconstruction. We record the complex amplitude of the 3-D object in coherent holography, whereas in incoherent holography, we record the intensity distribution of the 3-D object. In this chapter, we discuss the principles of coherent holography.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.