We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ${\mathcal{S}}$ denote the set of all univalent analytic functions $f$ of the form $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ on the unit disk $|z|<1$. In 1946, Friedman [‘Two theorems on Schlicht functions’, Duke Math. J.13 (1946), 171–177] found that the set ${\mathcal{S}}_{\mathbb{Z}}$ of those functions in ${\mathcal{S}}$ which have integer coefficients consists of only nine functions. In a recent paper, Hiranuma and Sugawa [‘Univalent functions with half-integer coefficients’, Comput. Methods Funct. Theory13(1) (2013), 133–151] proved that the similar set obtained for functions with half-integer coefficients consists of only 21 functions; that is, 12 more functions in addition to these nine functions of Friedman from the set ${\mathcal{S}}_{\mathbb{Z}}$. In this paper, we determine the class of all normalized sense-preserving univalent harmonic mappings $f$ on the unit disk with half-integer coefficients for the analytic and co-analytic parts of $f$. It is surprising to see that there are only 27 functions out of which only six functions in this class are not conformal. This settles the recent conjecture of the authors. We also prove a general result, which leads to a new conjecture.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.